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ABSTRACT

An error analysis study was conducted in order to assess the currently achievable

accuracies and the future anticipated improvements in the estimation of geopotential

differences over intercontinental locations. Extending the ideas put forward by Colombo

(1980), an observation/estimation scheme was proposed and studied, whereby gravity

disturbance measurements on the Earth's surface, in caps surrounding the estimation

points, are combined with corresponding data in caps directly over these points at the

altitude of a low orbiting satellite, for the estimation of the geopotential difference between

the terrestrial stations. The gravity disturbance data at altitude are inferred from GPS

measurements made from the low orbiter to the high-altitude GPS satellites, in a multiple-

high-single-low Satellite-to-Satellite Tracking (SST) configuration.

The mathematical modeling required to relate the primary observables to the

parameters to be estimated, was studied both for the terrestrial data and the data at altitude.

Emphasis was placed on the examination of systematic effects and on the corresponding

reductions that need to be applied to the measurements to avoid systematic errors. For the

gravitational accelerations inferred from SST data, a mismodeling related to a centrifugal

acceleration term was identified and corrected. Alternative formulations related to the

sampling (or discretion) and the propagated errors arising in the truncation theory

considerations were derived. Recurrence relations for the altitude generalized truncation

coefficients implied by Hotine's kernel, and for the degree variances implied by a first-

order Gauss-Markov covariance model were originally developed in this study.

The error estimation for the geopotential differences was performed using both

truncation theory and least-squares collocation with ring-averages, in case observations on

the Earth's surface _ are used. The error analysis indicated that with the currently

available global geopotential model OSU89B and with gravity disturbance data in 2 ° caps

surrounding the estimation points, the error of the geopotential difference arising from

errors in the reference model and the cap data is about 23 kgal cm, for 30 ° station

separation. This error is expected to reduce to about 12 kgal cm, when the lower-degree

harmonics of the reference model are improved by the incorporation of the global GPS-
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tracking data on Gravity Probe-B. The incorporation of gravity disturbance data at altitude

was studied using least-squares collocation with ring-averages. It was found that for a

low-degree (Nmax = 45) reference model, the data at the altitude of GP-B (600 km) can

improve the geopotential difference accuracy by about 7%, as compared to the use of

terrestrial data only. However, additional high-frequency observables at lower altitude are

needed to achieve the results obtainable when a high-degree reference model is used, and

to this end the gradiometer data from ARISTOTELES will provide a significant

contribution.
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CHAPTER I

INTRODUCTION

The fundamental objective of geodesy is the accurate determination of the position

and the gravity potential of points on the surface of the Earth or in the space surrounding

the Earth. Such information is essential to support research (as well as application) in a

number of related disciplines such as geodynamics, geophysics and oceanography.

Historically, geodesists have divided the problem of position and gravity potential

determination in two parts, due to the limitations imposed both by Nature and by the

observational techniques available. In that sense, angle and distance measurements on

the Earth would provide through triangulation and trilateration the "horizontal"

coordinates (4, X) of a point. The reference surface employed in these determinations is

the surface of an ellipsoid of revolution. The traditional practice in such determinations

(as opposed to modern integrated approaches) emphasizes on geometric principles, while

gravity field information is mainly used for the reduction of the surface measurements to

the reference ellipsoid. However, since the reference ellipsoid is a surface not physically

realizable, the third coordinate, the height of a point with respect to this surface, had to be

determined indirectly.

A rather easily accessible and naturally provided surface, the Mean Sea Surface

(MSS) or Mean Sea Level (MSL), would provide the reference surface with respect to

which geopotential numbers and heights could be reckoned. As long as the MSL, as

realized by tide gauge observations, was identified with a unique equipotential surface-the

geoid, spirit leveling (a highly accurate geodetic measurement type) and gravity

observations, would provide the geopotential number of a point. With certain

approximations involved, geopotential numbers would yield orthometric heights, while

gravimetry would provide the geoidal undulations (e.g. through Stokes' integral)

required for the computation of heights with respect to the reference ellipsoid.
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Under suchoperational procedures, the concepts of height and geopotential

difference become heavily inter-related; their determination constitutes the second part of

the problem mentioned in the beginning, where the physical properties of the Earth play a

dominant role. The advantage of MSL is that it provides a natural connection between

continents, enabling determination of height and geopotential differences between points

which cannot be connected by leveling. In that sense, MSS becomes the natural

reference surface for these determinations and establishes a world vertical datum.

Obviously, the entire setup heavily depends on the assumption that MSS coincides with a

unique equipotential surface of the Earth's gravity field, and on the accurate realization

and monitoring of MSL.

1.1 Vertical Datum Inconsistencies and the Impact of Modern Space

Techniques

Advances in a number of areas, that occurred during the last two decades, have

caused geodesists to reconsider the classical procedures of vertical datum definition and

height detemaination. Two main reasons are responsible for that:

(1) It has been well recognized by now that the MSS departs from an equipotential

surface due to the presence of the Quasi-stationary Sea Surface Topography (QSST),

whose magnitude is on the order of a meter. The presence of QSST affects the definition

of vertical datums in two ways:

(a) Vertical datums established with respect to different tide gauge stations do not refer

(in general) to the same equipotential surface, their offsets being on the order of + "_

kgal m (1 kgal m = 10 m2/s2).

(b) If in the adjustment of a vertical network, more than one tide gauge station were

constrained to have zero elevations (e.g. the 1929 General Adjustment of the U.S.

vertical reference system), the QSST differences at these stations will cause internal

distortions that propagate throughout the adjusted network.

Laskowski (1983) has studied the effects of vertical datum inconsistencies on

various gravimetric quantities by constructing certain models for the inconsistencies,
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using also the oceanographicestimatesof the QSST derived by Lisitzin (1965).

Laskowski(ibid) alsostudiedthelikely distortionsthattheoverconstrainingof the 1929

adjustmentof the U.S. leveling network might havecaused. He concludedthat the
internaldistortionsaremostseverenearthetidegaugeswhereincorrectzero-constraints

were imposed. On a global basis,the gravity anomalyerrors implied by the vertical

datuminconsistencymodelsheused,whenanalyzedharmonically,indicatedthatmostof

thepowerof thegravitationalsignaturesis concentratedbelowsphericalharmonicdegree
60.

(2) The advent of modern space techniques, such as Very Long Baseline

Interferometry (VLBI), Satellite Laser Ranging (SLR) and the Global Positioning System

(GPS), has changed fundamentally the position determination procedures.

Laser ranging to the high-altitude LAser GEOdynamic Satellite (LAGEOS) has

enabled the determination of geocentric coordinates for a number of globally (but not

evenly) distributed permanent tracking sites to accuracies at the -1-5 cm level (Smith et al.,

1985). VLBI measurements, on the other hand, are capable of determining baseline

vectors between stations separated by 7000 km, accurate to a few centimeters, from 24-

hour observing sessions (Herring, 1986). Being a geometric technique however,

insensitive to the stations' locations with respect to the Earth's center of mass, VLBI

requires that, at least one station's geocentric coordinates in the network, be defined from

another source (e.g. from SLR observations). Finally, relative positioning using the

GPS has already proved its capability to yield baseline components accurate to 2-3 ppm

of the baseline length on a local or regional basis. With the full satellite constellation in

orbit, dual frequency receivers and orbit determination using a fiducial network of

tracking stations, it is expected that the system's performance will be at the 3 mm plus

0.01 ppm of the baseline length (Carter et al., 1989). Apart of the individual accuracy

achievements in positioning, of each of the above techniques, the recent (January 1,

1988) establishment of the International Earth Rotation Service (IERS) (Mueller, 1988)

enables the optimum combination of the results obtained by the above techniques (as well

as Lunar Laser Ranging, and Doppler techniques), and the definition and maintenance of

a Conventional Terrestrial Reference System (CTRS). The realization of such a system is

accomplished through a network of stations whose geocentric coordinates are estimated
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within a few centimeters and which constitute the Conventional Terrestrial Reference

Frame (CTRF).

The main impact of the space techniques on the problem of height determination

comes from their ability to provide all three components of the geocentric Cartesian

coordinate vector, and thus geometric (ellipsoidal) heights as well. Hence, one of the

two uses of leveling (that of providing vertical position information) becomes

unnecessary. Consequently, in the context of modem position determination techniques,

the concepts of height and geopotential difference may be well distinguished. Substantial

effort has been made during the last few years, by a number of researchers (Engelis et al.

(1985), Kearsley (1986), Schwarz et al. (1987), Rapp and Kadir (1988)) to investigate

the data requirements and the attainable accuracies in deriving orthometric height

differences from GPS-derived ellipsoidal height differences and gravimetric undulation

differences. Such procedures aim to eliminate the need for spirit leveling in regional

applications, essentially reversing the traditional geodetic practice in height determination.

The aforementioned studies indicate that orthometric height differences accurate to about

2 ppm (of the baseline length), for lines 10-70 km long, are attainable, provided good

gravity data coverage exists and one carefully accounts for topographic effects. Although

such procedures may never reach the accuracy level of flu'st-order spirit leveling, they

certainly provide a promising cost-effective alternative for lower order vertical control on

a regional basis.

1.2 The Task of Vertical Datum Unification and the Proposed

Approaches

From the previous discussion, it becomes obvious that the internal inconsistencies

in continental vertical networks, due to over-constraining of tide gauge stations, can be

removed by re-adjusting the networks using _ one geopotential number constraint

(minimum constraint solution) (Laskowski, 1983). Such procedure was followed in the

establishment of the United European Leveling Network 1973 (UELN-73), where the

Normal Amsterdam Piel (NAP) was held fixed to an arbitrarily assigned geopotential

number as the "origin" point of the network (Kelm, 1985). The same procedure is

adopted for the definition and re-adjustment of the North American Vertical Datum 1988

(NAVD 88) (Zilkoski, 1986).
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The removal of internal distortions from continental vertical networks does not

pose any theoretical problems, nor does it require any additional observations other than

the geopotential differences obtained from leveling and gravimetry. The implications

however (e.g. in map-making) of changing the height system for an entire country or

continent have to be considered carefully. In addition, even if a tide gauge were to be

selected as the "origin" point of such network, the presence of the QSST would cause

some points along the coast to be below, and some above, the MSL (Colombo, 1985a).

Land "below sea level", shown on a coastal map, would be undesirable from the practical

point of view; however, as Colombo (ibid) pointed out, such problems may be avoided

using a local vertical reference for the region, based on a local tide gauge. Provided that

at least one station is connected to both the local and the national (or international)

network, both sets of "heights" may be converted to each other unambiguously. Such

procedures are conceptually very similar to the use of local "best-fitting" ellipsoids as

opposed to a global "Mean-Earth" ellipsoid (I-Ieiskanen and Moritz, 1967, section 5-11)

in "horizontal" network applications.

According to the above, the definition and realization of a global vertical network

finally reduces to the task of accurate determination of geopotential differences between

points that cannot be connected by spirit leveling (combined with gravity observations),

i.e. between points separated by ocean. Once these geopotential differences are

determined, e.g. between the "origins" of the various (internally consistent) continental

networks, an arbitrary value for the potential at one "origin" point, is enough to provide a

global uniform system of geopotential numbers.

Although the need for internally consistent continental networks arises from

practical considerations, establishing intercontinental vertical connections is primarily of

scientific, rather than operational interest, and the necessity of such connections has been

debated in the literature. One advantage that a global vertical network possesses, is that it

will enable referencing of regional gravity anomaly databases to a uniform system, thus

freeing global anomaly fields from regional systematic errors induced by height

inconsistencies (Rapp, 1983; Heck, 1990). Colombo (1985b) however, has pointed out

that GPS observations and gravimetry may enable one to switch from gravity anomalies

to gravity disturbances, in future gravity surveys, the latter ones being independent of

orthometric height inconsistencies. Although this is true, it is also unreasonable to
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believe that the wealth of gravity anomaly data acquired in the past will be simply

abandoned under such operational procedures.

The approaches proposed for the unification of vertical datums are based on either

one of the two following principles:

(a) Since the MSS does not coincide with an equipotential, define and realize in some

manner another equipotential surface to be the reference; if both the MSS as well as its

departures from the reference surface are accurately determined and monitored, the

transoceanic connections based on tide gauges can be maintained.

(b) Abandon MSS as a transoceanic connection and seek alternative techniques of

estimating accurately geopotential differences between points separated by ocean.

Colombo (1985b) classified the observational techniques and estimation

procedures proposed up to now for the unification of vertical datums into four main

categories; the fu'st two follow principle (a) above, while the other two (b).

(1) Oceanom'aphic Approach

This technique, outlined by Cartwfight (1985) considers the reference surface to

be at a fixed geopotential number above an isobaric (i.e. equipressure) surface, 2000

decibars below the annual MSS at some specified epoch. Cartwright's technique

employes hydrographic measurements along profiles that extend from shallow areas near

a tide gauge, to ocean depths of more than 2 km. These profiles are selected to coincide

with the repeat groundtracks of an altimeter satellite that can provide estimates of the

ellipsoidal height of the sea surface. Steric and geostrophic leveling are used to determine

the shallow point elevation relative to the deep isobaric surface, while pressure

measurements and spirit leveling are used to connect the shallow point to the nearby tide

gauge.

From the theoretical point of view, arguments against this technique have been

raised, related to the accuracy and suitability of the isobaric surface ("level of no motion")

hypothesis (Colombo, 1985b). In addition, the geostrophic leveling used to connect the

deep ocean location to the shallow one, may not be accurate enough to model the complex

ocean dynamics near the continental boundary (Wunsch and Gaposchkin, 1980). From

the practical point of view, several oceanographic restrictions limit the selection of sites
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wherethe techniquecouldbeapplied(e.g.sitesmusthavenarrow continental shelves,

should not be affected by fiver discharge, strong currents etc.). In addition, at least a full

year of (nearly) simultaneous observations at all sites is required to establish the

transoceanic links, and the resulting vertical datum would have a rather strong time

dependency and would require periodic re-definition. Although periodic maintenance

would be necessary for a global vertical datum, no matter what technique is used to

define and realize it (since the Earth's gravity field undergoes secular and periodic

changes due to a variety of geodynamic phenomena such as post-glacial rebound, mass

redistribution etc.), alternative techniques may offer better temporal stability.

(2) Altimetry-Gravimetry Approach

This technique, considered variously by Mather et al. (1978) and Wunsch and

Gaposchkin (1980), utilizes altimetric observations in combination with ocean gravimetry

and aims to the simultaneous recovery of the QSST and the geoidal undulation. The

estimation technique proposed by Wunsch and Gaposchkin (ibid) is in essence least-

squares collocation, and the separation of the geoidal from the QSST signal is aided by

the use of prior information in the form of a-priori degree variances for these signals.

One of the limitations of such procedures comes from the inaccurate and insufficiently

sampled oceanic gravity measurements. However, the ideas of Wunsch and Gaposchkin

(ibid) have been pursued further by a number of investigators (Wagner, 1986; Engelis,

1987) and recent analyses (e.g. Denker and Rapp, 1990) have verified the ability of

satellite altimetry to determine the long-wavelength features of the global ocean circulation

and simultaneously provide improved estimates of the long-wavelength part of the

oceanic geoid, as well as, improved orbital parameters. Such solutions though, aim to

resolve global features of the QSST, with wavelengths greater than about 4000 km;

detailed local determinations in the shallow areas near the tide gauge locations are further

complicated by the inaccuracies of the tidal models.

(3) GeodetiC Approach

The main ideas in this direction have been put forward by Colombo (1980). He

considered the realization of a global vertical network by a set of benchmarks whose
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geocentriccoordinatesandgeopotentialdifferencesareaccuratelydetermined. In his

analysis, SLR techniques would provide the geocentric coordinates, while surface

gravimetry, spirit leveling and a low-degree geopotential model would provide the

geopotential differences, in a least-squares collocation solution. He has also considered a

modification of the observed gravity anomalies to avoid possible contamination of the

estimated geopotential differences, by systematic errors in the anomalies due to height

inconsistencies. Additional error analysis performed by Hajela (1983) has indicated that

Colombo's technique could provide a US - Europe connection at that time, to an accuracy

of about 50 to 60 kgal cm. The reference geopotential model used at that time was the

OSU81 (Rapp, 1981 a). The disadvantage of Colombo's technique lies on its dependence

on the reference geopotential model. That is, the transoceanic "connection" of stations is

carried out analytically, through the long-wavelength information provided by the

reference model. Consequently, any errors of the low-degree harmonics propagate

directly to the estimated geopotential differences. This has also been manifested in the

contribution of the errors of the model to the total error budget, in the error analyses

performed.

Hein and EissfeUer (1985) have discussed the application of an integrated geodesy

adjustment approach to the problem, considering stations at (or near) tide gauges and

additional observations to those considered by Colombo (1980), such as altimeter

measurements and deflections of the vertical. Brovar (1988) and Rummel and Teunissen

(1988), on the other hand, have considered the analytical modification to the solution of

the geodetic boundary value problem, so that vertical datum offsets can be introduced as

unknowns and estimated by solving a linear system of equations. The technique of

Rummel and Teunissen (ibid) requires the same type of observables as the one of

Colombo (1980). However, the former, is in the strict sense applicable only if vertical

datum offsets are identified _ and introduced as unknowns in the linear system

to be solved, provided also that glflh_ coverage of gravity anomalies is available; such

restrictions have been circumvented in Colombo's (ibid) approach.

(4) Relativistic Approach

Based on a different physical principle, this technique, introduced by Bjerhammar

(1985), aims to the direct measurement of geopotential differences, using the effect of
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gravitation on frequency standards, as predicted by the theory of general relativity.

Unfortunately, this effect is too small to be detectable by the frequency standards

available at present, and application of this technique has to be postponed until orders of

magnitude improvements are achieved in the accuracy of frequency standards.

The scientific and technological advances that have been achieved, or are

anticipated for the near future, appear to favor at present the implementation of

oceanographic or geodetic type of approaches for vertical datum connections. Both

techniques (but more critically the oceanographic) require some internationally co-

ordinated observation campaign for their implementation (Rapp, 1987); given the limited

interest (from the operational point of view) for unification of vertical datums, techniques

that promise best results while taking maximum advantage of data that either exist, or will

be collected for other investigations, should be preferred. Also, preference should be

given to those techniques that provide longer temporal stability in the resulting unified

global vertical network, and thus require less often re-def'mition and maintenance.

1.3 Motivation, Objective and Organization of the Present Study

Two types of geodetic projects currently under planning and/or development create

a favorable situation for the implementation of geodetic techniques for vertical datum

connections.

First, the incorporation of GPS receivers on-board a number of satellites

scheduled for launch in the 1992-1995 time frame. Table 1 (see also (Colombo, 1990))

provides some information related to these missions. With the GPS receiver on-board

the lower orbiter observing simultaneously as many as seven GPS satellites, a Multiple-

High-Single-Low Satellite-to-Satellite Tracking (SST) configuration is established (Jekeli

and Upadhyay, 1990). Such configuration enables one to estimate all three components

of the total inertial acceleration at the altitude of the low orbiter. Provided non-

gravitational accelerations can either be measured (as is proposed for ARISTOTELES),

or effectively be eliminated (as in the case of the drug-free GP-B spacecraft), the result of

such an observational system may be viewed as a dense grid of uniform quality

"observations" of the gravitational acceleration vector at the altitude of the low orbiter.

There are two ways that such "observations" can contribute to the solution of the problem

at hand:
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(a) Analysis of the global set of measurements collected during the lifetime of the low

orbiters, is capable of producing global geopotential models whose quality is orders of

magnitude better than current state-of-the-art models, and whose resolution (half

wavelength) ranges from about 600 km (TOPEX/POSEIDON) to 100 km

(ARISTOTELES). These figures have been assessed initially for GP-B by Smith et al.

(1988) using an analytical approach, and have been verified recently through more

elaborate and complete simulation studies (Pavlis, E. et al., 1990). Given the

importance of an accurate geopotential model in the implementation of geodetic

approaches for vertical datum connections, a major contribution to the achievable

accuracies is to be expected from the above missions.

(b) The dense grid of observations at altitude may help resolve localized signatures of the

gravitational field on the surface of the Earth, provided the satellite is low enough and/or

instrumentation on-board provides additional measurements, more sensitive to the finer

details of the field (e.g. the gravity gradiometer in the case of ARISTOTELES).

Table 1. Future Satellite Missions Expected to Carry GPS Receivers On-Board.

Name
-=,

TOPEX/

POSEIDON

GRAVITY

PROBE-B

(GP-B)

ARISTOTELES

Scheduled

Launch Date

1992

1995

1995

Altitude/

Inclination

~ 1336 km

66.02 °

~ 600km

90 °

~ 200km

96.3 °

Description

USA and French Altimeters and other

oceanographic instruments. GPS

receiver under development.

Stanford General Relativity Gyroscop-

ic Experiment Drag-Free. 2-year

mission.

European Space Agency's Gravity

Gradiometer. 6-month mission.
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A secondtype of geodeticactivity, pertinent to the vertical datumconnection

problem, is the geodeticfixing of Tide GaugeBenchMarks (TGBMs) (Carteret al.,

1989),a project that hasbeeninitiated by the InternationalAssociation for Physical
Sciencesof the Ocean (IAPSO). Highly accuratedeterminationof the geocentric

positionsof theTGBMs (aswell asaccuratemonitoringof theirmotions)is necessary,in
orderto separatethe crustalmotionsof theTGBMs from the apparentchangesof the
MSL observedat their locations, and thus, provide the meansof investigating the

possibilitythatglobalMSL showsarising trendresultingfrom globalwarming(IAPSO,
1985). Although monitoring changesin the global sea level does not require

establishment of a global vertical network, the data that are to be collected for the former

purpose, can be of use for the latter as well. In addition, if geopotential differences

between TGBMs can be determined accurately, without any reliance to MSL, they can be

used to provide independent control over oceanographically determined QSST

between the TGBMs.

The above developments provided the motivation to reconsider (from the geodetic

point of view) the problem of estimating geopotential differences between points

separated by ocean. As mentioned already, this is equivalent to the problem of

connecting different vertical datums to a common reference, thus establishing a uniform

global vertical datum. Following the ideas of Colombo (1980), a "global vertical datum"

is defined here as a network of benchmarks situated on various continents, between

which a set of estimated geopotential differences is given. The technique used to estimate

these geopotential differences is based on an observational system that attempts to

improve the one considered by Colombo (ibid), and overcome some of its limitations.

The basic "components" of the current observational setup are shown in Figure 1.

Two benchmarks, BMA and BMB, are considered to be situated on the same or on

different continents (separated by ocean). These are VLBI or SLR stations, whose

geocentric coordinates are known to sub-decimeter accuracy, and in addition they are

equipped with calibrated absolute gravimeters, so that the magnitude of absolute gravity

is also known accurately at these sites. Differential GPS observations, and relative

gravity measurements, provide estimates of the gravity disturbance at points inside "caps"



caps at
altitude I

I
I
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Figure 1. The Basic Observational Geometry.

centered at the corresponding benchmarks. Consider also, "caps" centered directly over

these benchmarks, at the altitude of a satellite which carries a GPS receiver on-board.

Inside these caps, at satellite locations whose geocentric coordinates are known from the

GPS tracking, some functional of the gravitational potential has been estimated (e.g. the

three components of the gravitational acceleration vector).

From the data requirement point of view, apart of information that either exists

already or will be obtained as part of other geodetic activities, the additional observations

required here are the absolute gravity measurements at the benchmarks and the gravity

disturbances in the caps surrounding them. Careful coordination (in terms of site

selection) with the project of geodetic fixing of TGBMs (Carter et al., 1989) can reduce

the number of additional absolute gravity measurements required, while kinematic (or

rapid smile) GPS techniques can provide an efficient way of performing the gravimetric

surveys inside the caps.

Based on the above information, using also a reference geopotential model, one

can estimate the potential difference between the benchmarks BMA and BMB, using
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least-squares collocation (Moritz, 1980). In addition,such estimation technique, enables

one to derive measures of the accuracy of the resulting estimates. The main objective of

this study is to provide accuracy estimates for the resulting geopotential differences,

based on realistic assumptions for the errors associated with the input data, and

considering the observational setup of Figure 1, or variations of it. More precisely, the

error analysis to be presented, will address the following issues:

(1) The attainable accuracies for the geopotential differences, if state-of-the-art

geopotential models, developed in the absence of the anticipated missions, are to be

used in the estimation.

(2) The corresponding accuracies using models of the quality expected to be obtained

from various future missions.

(3) The contribution of observations at altitude to the estimation of the geopotential

differences, and the possible improvements in accuracy through the incorporation

of such observations.

It is worth noticing that the procedure considered here does not involve spirit

leveling at all. In more realistic configurations, involving more than one benchmark per

continent, if geopotential differences between these benchmarks are available from

leveling (combined with gravimetry), they could (and should) be used in a simultaneous

adjustment, to increase the redundancy and strengthen the solution (as in the estimation

scheme described by Colombo (1980)). In that sense the current error analysis

corresponds to a worst-case scenario.





CHAFFER II

MODELING ASPECTS

The accuracy that can be achieved in the estimation of the geopotential differences

using the configuration described in section (1.3), depends on the accuracies of the

primary observables involved in the estimation, and on the way according to which

random and systematic errors in the observed quantities propagate to the estimated

values. The former can be assessed from information related to the performance of the

sensing instruments involved in the data acquisition process (e.g. gravimeters); the latter

requires the development of analytical formulations that relate the primary observables to

the quantities of interest, and constitutes the subject of this chapter. More precisely, the

following paragraphs focus on the modeling of the gravity disturbance observations on

the surface of the Earth, and of the components of the gravitational acceleration vector at

altitude as obtained from a Satellite-to-Satellite tracking configuration.

2.1 The Boundary Condition Implied by Gravity Disturbance

Observations

Let (r, 0, _) denote geocentric distance, geocentric co-latitude and longitude

respectively. The following notation definitions are adopted:

V(r, 0, X) : true gravitational potential of the Earth.

Ve(r, O) : gravitational potential of a reference ellipsoid of revolution whose

surface is an equipotential surface of its gravity field.

Vm(r, 0, _) : true value of the gravitational potential of the Earth, that arises from

all the harmonics only up to maximum degree M.

t/_(r, 0) : true centrifugal potential of the Earth.

14
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It is well known (Heiskanen and Moritz, 1967, p. 47) that:

¢(r, 0)= 2-1-co2r2sin20 (2.1)

where co is the spin rate of the Earth. An estimate of _(r, 0) may be obtained from

estimated values of r, 0 and co. Assuming for a moment that (r, 0) are perfectly known,

the error in the estimated value of _(r, 0) due to an error e¢0 in co will be:

e_(r, 0)o_ = _r2sin20eco (2.2)

A

Using the nominal values r = 6371 km, co = 7292115 x 10-11rad/s, and eco = 0.1 x 10 -11

rad/s (Chovitz, 1988), one has for a point on the equator (where eO_ becomes

maximum):

maxe_) (r, O)co= 3 x 10-3m2s -2 = 3 x 10 -4 kgalm (2.3)

Such error in potential translates to linear ("height") error of about 0.3 mm and therefore

is, in the context of this study, negligible. Hence, in all subsequent analysis, the spin

rate of the actual Earth will be considered perfectly known and equal to the spin rate value

used in the definition of the reference ellipsoid, i.e.

e_ (r, 0)o_ = 0, (2.4)

and the centrifugal potential estimated from perfectly known (r, 0) but approximately

known co, will be considered identical to the true centrifugal potential of the actual Earth.

The following notation will be used:

W(r, 0, _.) = V(r, 0, _.) + _(r, 0) (2.5)

Ue(r, 0) = Ve(r, 0) + ¢(r, 0) (2.6)

urn(r, 0, _.) = Vm(r, 0, _.) + ¢(r, 0) (2.7)
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sothat,W represents the true gravity potential of the Earth, U e the gravity potential of the

reference ellipsoid, and U m the true value of the part of the gravity potential of the Earth

that contains harmonics of the true gravitational potential only up to maximum degree M.

V m and U m should not be confused with estimates Q,n and Om of these quantities,

obtained e.g. through satellite perturbation analysis; the former are true values while the

latter are contaminated by the commission error of the estimated harmonic coefficients.

The disturbing potential T at a point P(r, 0, X), is now defined by Heiskanen and Moritz

(1967, section 2-13):

Tp = Wp- U_ (2.8)

with respect to the eUipsoidal field, and by:

=wp-up (2.9)

with

assumption made concerning the centrifugal potential, one has:

Tp = Vp- _p (2.I0)

T_p=Vp-V_ (2.11)

Inaddition,thefollowingquantitiesareintroduced(Hciskanen and Moritz,ibid):

gravity vector " gp= grad(V_r)p (2.12)

normal gravity vector • '_p = grad(Ue)p (2.13)

respect to the truncated field Um. Due to the previous definitions and the

gravitydisturbancevector • 8gp = gP- _¢P (2.14)

and the geometrical relations associated with these definitions are illustrated in Figure 2.

According to the previous definitions and due to linearity of the gradient operator one has:

_gp = grad(T)p (2.15)



_h
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Topography (S)

Spherop (Ue = U_)

normal

plumb
line

actual plumb line

straight dlipsoidal normal

Reference

Ellipsoid (Lie= L_o)

Figure 2. Geometry Associated With the Gravity Disturbance.

Now, proceeding along the same lines as Moritz (1980), if %is the arc-length along the

isozenithal (ibid, p. 345), one can derive from equation (2.15):

8gp = -

(2.16)

where 8gp is the component of 8gp in the downward direction of the isozenithal passing

through P. The very small curvature of the normal plumb line (Moritz, 1983, p. 7)

justifies the approximation that the normal plumb line coincides with the straight

ellipsoidal normal, in which ease the isozenithal will also coincide with the straight

ellipsoidal normal (Moritz, 1980, pp. 345-346). Under such an assumption, equation

(2.16) becomes:

(2.17)
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--)

and 8gp will be hereon understood to represent the component of 8gp along the

downward direction of the straight ellipsoidal normal through P. If _h is the unit vector

in the direction of increasing dlipsoidal height, and _n the unit vector along the normal

plumb line (pointing outwards), then the assumption made before implies:

-' -" (2.18)
e h --- e n

and equation (2.17) may be written as:

_gp = (_p- Tp)" (- eh ) (2.19)

where the dot denotes scalar product. According to (2.18) the last equation becomes:

8gp =- gp • e h -

= - grad(W)p • eh" ITI_ or f'mally:

- I'_pl = 8gp +
P

(2.20)

On the other hand, if EH is the unit vector along the direction of increasing orthometric

height, one has:

I_vl = grad(W)p • (- _n) (2.21)

or, (Pavlis, 1988, equation 2.31) :

ow 11 ow )M_O Nc_'-s_)(3_, p (2.22)
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where, 0 is the total deflection of the vertical, _ and 11 its latitudinal and longitudinal

components respectively (Heiskanen and Moritz, 1967, p. 83), M and N the meridional

and prime vertical radii of curvature respectively and ¢pdenotes geodetic latitude.

Adding equations (2.20) and (2.22) by parts, one obtains:

Ig'l_- I_pl = 8gp + 8p (2.23)

OW OW]cos - TI
Mo_ Ncos q_g p (2.24)

From equations (2.17) and (2.23) one has:

However, it was shown by Pavlis (1988, equation 2.52), that:

(O_)p = (O_')p- e2sinOvc°sO t Or-_O)p+ 0(c4)

(2.25)

(2.26)

where e is the In'st eccentricity of the reference ellipsoid. Hence, neglecting terms of the

order e4 and higher, one has from (2.25):

Ig'pl- I_pI =-(--_)p +(eh)p +SV
(2.27)

where,

(eh}V = Ie2sinOcosO{ OT/1

L  r O]Jp (2.28)
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Equations (2.25) or (2.27) represent the boundary condition of a Neumann-type

boundary value problem (bvp) of potential theory (Kellogg, 1954), linearized with

respect to a Somigliana-Pizzetti normal gravity field (Heiskanen and Moritz, 1967,

section 2-7). From equations (2.22) and (2.24) follows that:

(2.29)

Equation (2.25), when compared with (2.29), indicates that linearization with respect to

the aforementioned normal field, removes the centrifugal terms from (2.29). In addition,

linearization permits the truncation of the Taylor series expansion of 0./0h, around 0./0r,

to terms of O(e 2) in (2.27). Provided that the effect of the mass of the atmosphere has

been taken into account analytically (see section 2.3), the disturbing potential T may be

considered harmonic outside the topographic surface (S). The problem at hand then, is to

determine the function T, harmonic outside (S), and regular at infinity, subject to the

boundary condition (2.25) or (2.27), both valid over the known boundary (S). This is a

fixed bvp; however, both (2.25) and (2.27) represent oblique derivative boundary

conditions, since neither the ellipsoidal normal, nor the geocentric radius vector, are

normal to the surface (S), where the boundary values are given. Equation (2.25)

contains the effects of the approximation (2.18), while (2.27) contains in addition the

effects of the neglected terms of O(e 4) and higher in the Taylor series expansion of 0.fOh

around 0-f0r. Equation (2.27) may also be written as:

I_pI- I_pI- E(eh)p + Cp]---- (0-_--)p
(2.30)

or, due to equations (2.10) and (2.11) :

+ce]+
()r p = p

(2.31)

For the purpose of future reference, equation (2.25) is also repeated here, written in the
form:

(2.32)
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Regardless of the form of the boundary condition that one adopts, the primary

observable from surface gravimetry is the magnitude of the gravity acceleration at the

surface point P. The magnitude of the normal gravity at the same point can be computed

to any degree of precision, once the reference ellipsoidal gravity field is defined and the

geocentric coordinates of P are given (Heiskanen and Moritz, 1967, section 6-2). Hence,

the _m'avity disturbance

8gp = I_pl-I_pl , (2.33)

as obtained from surface gravimetry, contains the observation errors of Ig)pl and the errors

in I_pl induced by the errors in the geocentric coordinates of P. The latter is a

misregistration error, i.e., the actual observation refers to a different location than the one

defined by the geocentric positioning results.

From the point of view of an analytical formulation for the solution of the current

bvp, it is obvious that 8g is related to the unknown disturbing potential, in a rather

complicated manner, due to the presence of the atmospheric effects, the ellipsoidal terms

(£h)P and ep, and even more critically due to the fact that it is defined over the

topography, a very complex surface which cannot be describe analytically (Holota,

1985). Fortunately however, the dominant spherical character of both the shape, as well

as the gravity field of the Earth, and the fact that the atmospheric mass amounts to only

about 10 -6 (Moritz and Mueller, 1987, p. 4) of the mass of the Earth (hence the

atmospheric attraction is about 10 -6 the attraction of the rest of the Earth's mass), have the

consequence that the solution of the current bvp can be approximated to a high degree of

accuracy by the solution of a second bvp of potential theory for the space exterior to a

sphere. The latter solution can subsequently be refined by appropriate corrections that

account for the differences between the real world and the idealized situation. The

analytical solution of Neumann's bvp for the exterior of a sphere is the subject of the next

section, while the refinements to this solution are considered afterwards.

2.2 Solution of Neumann's Boundary Value Problem for the Exterior

Space of a Sphere

In the general case, the statement of the exterior Neumann's problem is given as

(Kellogg, 1954, p. 246):
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"DetermineafunctionU, harmonic in the infinite region outside a closed surface

S, if its normal derivatives OU/On assume on the surface S prescribed values".

Harmonicity over an infinite region will be understood to include the demand for

regularity at infinity (ibid, p. 217). Such demand ensures uniqueness for the solution of

the exterior problem, unlike the interior one, where the unknown function can only be

determined up to an additive constant (ibid, p. 246).

To develop an integral formula for the solution of the exterior problem, one must

find a Green's function of the second kind G(P ; Q), such that:

S (2.34)

where, P is outside S and Q defines the location of the variable area-element dSQ on S.

In the current case the surface S will be the surface of a sphere of radius R, centered at

the origin O of the coordinate system used (see Figure 3).

p (r, 0, _.)

F

/,

(R. 0', _')

Figure 3. Geometric Relations Used in the Derivation of Hotine's Kernel.



23

The unknown function U will be denoted here T, while the boundary values _Tf'_" with

opposite sign will be denoted _g, i.e.

0T
8g = - _- (2.35)

on the sphere (O, R). For the determination of the required Green's function one may

proceed as in Hotine (1969) (see also (SjSberg, 1990)). From Figure 3 one has:

l 2 = r2 + R 2 - 2Rr cosy (2.36)

and setting:

R
k = -- (2.37)

r

yields:

r=(1+k_-2k_o_v)'/_
l (2.38)

The fight-hand side of the last equation is readily recognized to be the generating function

of the Legendre polynomials (Davis, 1975, p. 365); hence:

_-= n_O=knPn(c°s V)
(2.39)

where, Pn(t) denotes the nth-degree Legendre polynomial of the first kind with argument

t (Heiskanen and Moritz, 1967, section 1-11), and the infinite series in (2.39) is

absolutely and uniformly convergent for k< 1. Considering k as an independent variable

in (2.39) and integrating both sides of (2.39) with respect to k, one obtains:

f

Ldk=Z k_+lP.(cosV)
t n=on+ 1 (2.40)



Now,asHotine (1969, p. 311) has observed:
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2n+1=2.___L_
n+l n+l (2.41)

so that, from (2.39) and (2.40), taking also into account (2.37), one has:

f ao

2R- rdk = _ 2n+l kn+lpn(cosv)
l l n=0 n+l (2.42)

The indefinite integral in (2.42) may be evaluated in closed form as:

f L dk = In2 + ln(rL + k-cos V)l
(2.43)

Considering the limiting value of the expression on the right-hand side of equation (2.43)

as r tends to inf'mity, it may be easily verified that:

rdk= 1 r
l 1 - cos_

(2.44)

In addition,

lhn R
r_o**{t} =° '

(2.45)

so that equation (2.42) implies:

Since,

IP.(01< 1

n+_11 kn+lpdco s _)[r

; -l<t<l, n=0, 1,2,...

(2.46)

(2.47)



onehas:

lira kn+IPn(c°s_) = Z 2n+l Pn(cOs _)" lim {kn+1}= 0
r--->_o n=O n + 1 r--)oo '

as long as k < 1. Hence, equation (2.46) finally becomes:

25

(2.48)

I-I{k,_t)= Z 2nn+-_lkn+IPn(cOs _)
n--O (2.49)

where:

H(k, V) = 2DK.. l_.D(k, V) + k - c°svI •l , _g_O
(2.50)

and: D2( k, V) = I - 2kcos_ + k 2 (2.51)

The series in (2.49) has the same convergence properties as the one in (2.39), for k < 1.

The case k = 1 requires special consideration in order to establish conditional

convergence, except of course for _ = 0 (Hotine, ibid). The function H(k, _) will be

designated hereon Hotine's function (or kernel); more precisely the form (2.50) will be

referred to as Pizzetti's extension of Hotine's kernel, while the term Hotine's kernel will

be reserved for the special case when k = 1.

The unknown function T is now identified to represent the disturbing potential

(equations (2.8) and (2.10)). Assuming that T is harmonic outside the sphere (O, R), the

following relation will be adopted for its expression in terms of solid spherical

harmonics:

n

"l(r, 0, k)= _-G-_--x (R) n X CnmYnm(0, _.)
"_-0 = m=-. (2.52)

where: GM is the geocentric gravitational constant
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t2nm are fully-normalized, unitless, disturbing potential coefficients (with

respect to the ellipsoidal gravitational field)

/ sin Irr_,

ifm>O

if m<O (2.53)

where Pnm(t) is the fully-normalized associated Legendre function of the first kind with

argument t (Heiskanen and Moritz, 1967, section 1-11). Denoting the nth-degree surface

spherical harmonic (ibid, section 1-10) of T by Tn(0, _.), i.e.,

oo
n

T(r, O, _)= r'_'E (R) n E O--nmYnm(O, _,)
n=O m=-n (2.54)

equation (2.52) becomes:

oo

T(r, 0,_)= E (R}n+lTn(O' _')
n=O (2.55)

and both (2.52) and (2.55) are convergent for r > R (ibid, section 1-16). According to

the last equation one has:

n=O (2.56)

and thus, according to (2.35):

oo

+1

5g(r, O, _)= _E (n + 1}(rK)n Tn(O, _,)
n=O (2.57)
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Note that8ghereis usedmerelyasasymbolfor - 3T/3r, with no explicit connection to

the quantifies that are actually observed, in contrast to the discussions of section 2.1. The

relation between the current 8g and the observables will be considered later.

Assuming that 8g(r = R, 0, X), on the surface of the sphere (O, R), can be expressed as a

convergent series of surface spherical harmonics, 8gn(0, X), one has:

oo

n=0 (2.58)

do = sinO'dO'dX'

Equation (2.60), due to (2.59), yields :

 --llf ' z.')P.(cosT.(o, 8 R,o, v)do
R 4g

(2.62)

=*(due to (2.55))

and, due to (2.57) and (2.58), it follows that:

_gn(0, _,)= _ Tn(0, 2L) (2.59)

The surface spherical harmonics 8gn(0, X), may be determined by (Heiskanen and

Moritz, equation 1-71):

2n+l (( 8g(R, 0', X')en(cos v)dG_gn(0, _.) = 4g
JJ

o (2.60)

where o is the surface of the unit sphere, and :

cosV = cosOcosO' + sinOsinO'cos (X - _.') (2.61)



"n(O0 0',
n=O
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(2.63)

where in the last equation the orders of integration and summation have been

interchanged. Due to (2.49), and considering (2.37), the last equation finally becomes:

T{r, O, _)= 4-_ f f H(R' w}Sg(R' 0', _')do

O (2.64)

The last equation is the desired integral formula, that determines the value of the

harmonic function T, at any point P(r, 0, k) outside the sphere (O, R), from the values of

its normal (radial) derivative, given continuously over the surface of this sphere. In the

limiting case where r--->R, it can be shown easily that:

H(1, W)-I-I(w)= csc _ -In(l+ csc _) (2.65)

oo

and" I_I(v) = _ 2n+l Pn (cos W) (2.66)
n=0 n+l

while equation (2.64) becomes :

x')do
o (2.67)

where the constant radius R was omitted from the notation of the kernel H(_g).

From equations (2.55) and (2.59) one also obtains:

oo

T(r, O, _.)= R E ---1--IK_n+l$gn(O, _)
n=O n+ 1 xr_ (2.68)
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which representsthe solutionof thebvp in question,in termsof sphericalharmonics

(comparewith (Heiskanenand Moritz, 1967,equation 1-91)); the surfacespherical
harmonics8gn(0,_.)areagainobtainedfrom equation(2.60).

Comparingequation(2.64) to (2.34), taking also into accountthe definition (2.35), it
becomesobviousthattheGreen'sfunctionof thesecondkind G(P ; Q) for theproblemat

handis :

(2.69)

ThefunctionH(k, _) possessesa numberof propertieswhicharegivennext :

(1) H(k,y)>0 ; 0<k<l, O<v<n (2.70)

This can be proved easily if one recognizes that for the above range of k and V, it holds

true that •

2k D + k - 1 (2.71)
D'> 1-t

and utilizes a series expression for the quantity ln(1 + x) for x > 1/2.

(2) V2H( k,V)=0 ; k<l , (2.72)

i.e., H(k, V) is harmonic outside the sphere (O, R), as it can be seen immediately from

the expression (2.49).

0H(k, V) R(r 2- R2)
(3) - r = (2.73)

Or t 3 '

which may be proved either by direct differentiation performed in equation (2.50), or,

more simply, by differentiation of the series expression (2.49) utilizing also the relation

(Heiskanen and Moritz, 1967, p. 35)"

tm

R(r2-R2)_ ,Y_.,(2n+ 1) (rR)n+lPn(COSV)
l 3 n=0 (2.74)



30

Note thattheright-handsideof (2.73)is exactlythekernelfunctionof Poisson'sintegral

0bid, equation1-89). In addition,from (2.73)maybeeasilyverifiedthat:

{aH V)/lim -- =0
r---)R /

(2.75)

(the case V = 0 requires use of L'Hospitars rules to prove the last relation). This relation

is actually a boundary condition that is imposed on the Green's function of the second

kind, developed for the solution of the second bvp of potential theory (Roach, 1970,

equation 9.88), specialized here for the case of spherical boundary.

A graph of the function H(V) (equation (2.65)), is given in Figure 4; for

comparison purposes, the figure also illustrates Stokes' function S(_) (Heiskanen and

Moritz, 1967, equation 2-164).

Although gravity disturbances are geometrically and conceptually simpler than

gravity anomalies, traditional geodetic practice has relied heavily on the latter, for the

determination of the external potential of the Earth. The underlying reason, is the

requirement for a known boundary for the definition of the disturbances, unlike the

anomalies (Hotine, 1969, p. 314). Using observations of the gravity anomaly vector and

the gravity potential, all over the unknown surface of the Earth, Molodensky's bvp is

formulated as a non-linear, free bvp, whose solution determines not only the external

potential, but also the physical surface of the Earth. Linearization in that case requires the

introduction of both a normal gravity field and an auxiliary known surface (the telluroid),

in order to reduce the original problem to a linear, fixed bvp, and thus enable a tractable

solution. The definition of the telluroid requires additional conditions to be imposed on

either the potential anomaly AW (and the directions of actual and normal plumb lines)

(Marussi mapping) or the gravity anomaly vector z_ (gravimetric mapping) (ibid, pp.

338-339). In the current case, the physical surface of the Earth is considered known,

hence the introduction of the telluroid (and subsequently of the above conditions on AW

or A-_), is unnecessary. The normal gravity field, is introduced in order to remove

centrifugal terms from equation (2.29) and enable an early truncation of series related to

ellipsoidal terms.
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Figure 4. The Kernels of Hotine and Stokes.



32

Finally, from the previous derivations, it is obvious that the use of gravity

disturbances circumvents the problems related to the inadmissible harmonics of degrees

n = (0, 1), which have to be suppressed from the disturbing potential for the derivation of

Stokes' integral (Hotine, 1969, pp. 317-318). While global gravity anomaly data, input

to Stokes' integral should not contain harmonics of n = (0, 1), no such restrictions apply

to the disturbances to be input to Hotine's integral formula. It should be noted here, that

the absence of first-degree harmonic from T, which implies coincidence of the center of

mass of the Earth with that of the reference ellipsoid, was implicitly assumed when the

centrifugal terms of the true geopotential and the normal one were equated (see equations

(2.8) and (2.10)). The effect however, on the centrifugal potential, of non-gec_entricity

of the coordinate system used, is only about 1 x 10 -3 kgal m (for present accuracies on

the determination of the geocenter), hence the geocentricity condition there, only mildly

needs to be employed.

2.3 Consideration of Systematic Effects

The integral formula (2.64) was developed based on the assumptions:

(a)

(b)

(c)

The disturbing potential T is harmonic outside the sphere (O, R) (see equation

(2.52)).

The boundary values 8g represent radial derivatives of T (with opposite sign; see

equation (2.35)).

Boundary values are given on the surface of the sphere (O, R).

In the real world, the presence of the atmosphere violates assumption (a), while the

available boundary data do not comply with either (b) or (c), as was discussed in section

2.1. The simplicity of the previous formulation though, and the magnitude and spectral

content of the discrepancies between the real world case and the one assumed in section

2.2, suggest that it is preferable to retain the formulation developed, and modify the

observable, in order to ensure the best possible compatibility with the analytical models,

at the cost of degrading somewhat the integrity of the original measurements.

The primary information available from surface gravimetry combined with GPS

positioning, is the magnitude of the gravity acceleration at the surface point P, and the
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geocentricCartesiancoordinatesof P. Normal gravity at the samepoint may be

calculatedby transformingtheCartesian coordinates to ellipsoidal ones (Heiskanen and

Moritz, 1967, section 1-19), and then making use of closed formulas for the magnitude

of normal gravity, as described in (ibid, section 6-2). Alternatively, Cartesian

coordinates may be transformed to geodetic ones, and normal gravity may be calculated

from a truncated series (ibid, section 2-10). Pavlis (1988, section 3.1.1) has shown that

such series should include terms at least up to O(h2/a2), to avoid introduction of

undesirable systematic errors. That is:

I_d = ),Q_I- 2(1 + f+ m-2fsin2qka,)-_ +_E) 2] (2.76)

where tl_ is the geodetic latitude and hp the ellipsoidal height of point P (see also Figure

2), and the rest of the notation is defined in (ibid, section 2.3.1).

According to the above the gravity disturbance _gp, defined in equation (2.33), is

evaluated. The systematic corrections to this quantity are described next.

1. Atrnospheri¢ Correction : [igA

Provided the mass of the reference ellipsoid used to define the normal potential

includes the total mass of the atmosphere (as in the cases of GRS '67 or GRS '80),

Moritz (1980, p. 424) has shown that the atmospheric correction on measured gravity is

given by:

8gA = G _ (2.77)

where M(rp) is the mass of the atmosphere above a sphere passing through the

observation point P (see also (Pavlis, 1988, Figure 6)). To remove the atmospheric

effect from 8gp, 8gA needs to be added to the gravity disturbance as given by (2.33).

Obviously, since _gA has to do with measured gravity, which enters in the same way in

the definition of both disturbances and anomalies, the correction is identical for both

quantities (Moritz, 1974).

For computer implementation it is convenient to evaluate dgA from:

8gA = 0.8658 - 9.727 x 10SHp + 3.482 x 10"9H 2 (mgal) (2.78)
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whereHp is theorthometric height (or equally well the ellipsoidal one) of the gravity

station in meters. This polynomial was developed by Wichiencharoen (1982), by fitting

a quadratic function to the tabulated values of (IAG, 1971, p. 72). The indirect effect

(shifting of equipotential surfaces due to the condensation of the atmospheric mass on the

reference ellipsoid), is only about - 0.7 cm at sea level, where the correction becomes

maximum (Moritz, 1980, p. 425), and thus it can be safely neglected.

2. Ellivsoidal Corrections : e.h, ep

From equation (2.29) it can be seen that:

OW

i.e., el, arises due to the difference in the directional derivatives of W along the straight

eUipsoidal normal (which almost coincides with the normal plumb line) and the actual

plumb line. On the other hand, from (2.26) it is seen that ell represents the difference (up

to O(e2)) between the directional derivatives of T along the radial line and the straight

ellipsoidal normal. Pavlis (1988, sections 2.3.3, 2.3.6) has shown that the corrections

eh and ep are almost identical both in terms of magnitude and frequency content. The

corrections are of the order of 10 lxgals and produce long-wavelength signatures on the

disturbing potential that may reach 20 kgalcm (ibid, Figure 42). The combined

correction (eh + ep) can be computed efficiently in terms of either point values or area-

mean values, from an existing geopotential coefficient set such as the OSU89B (Rapp

and Pavlis, 1990), using the formulation developed by Pavlis (1988, sections 2.3.3,

2.3.4, 2.3.6).

With the above correction terms defined, making use of equations (2.30) and

(2.52), one can write:

clo
n

La(rp. 0. Z,)= GM _ {n + 1}(_)nm__ n _---nmYnm{0. ),)
1_ n=o -- (2.80)

where the reduced observable La(rp, 0, _.) is given by:
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Equation (2.80) representsa mathematicalmodel, linear with respectto the
coefficientsCam. A correspondingform of (2.80),written in termsof area-meanvalues
of La(rp,0, _), maybeusedto setupa linearsystemof observationequations,in order

to estimatea truncatedset of coefficients Cam,from a (preferably global) set of
"observed"valuesof La(rp,0, _,).This maybedonein essentiallythesamemannerasit

wasdone,usinggravity anomalies,in (Pavlis,1988).

However, for the current purpose,the reducedobservableof (2.81) is clearly

inadequate,sinceit refers to the surface point P, while the intention is to make use of

(2.64), which requires values referring to the sphere (O, R). The continuation of the

values referring to the physical surface of the Earth, to a surface that is analytically

manageable, poses the most difficult problem of all other reductions, both from a

theoretical as well as a numerical standpoint. The treatment described next consists of

two steps; f'n'st the surface values are analytically continued to the surface of an ellipsoid

and second, equation (2.67) is modified to account for the differences between the

ellipsoidal and the spherical surfaces. The problem of analytical continuation is also

encountered in the implementation of Stokes' integral, and due to its importance has

received extensive studying by a number of investigators (e.g. Moritz (1966; 1974;

1980); Wang (1988)). Their established notation is adopted in the following discussion.

3. Analytical Continuation • gl

For notational convenience the quantity La(rp, 0, _,) of (2.81) will be simply

denoted 8g here (not to be confused with 8g as used in other sections). The purpose of

analytical continuation, is to determine a corresponding quantity 8g* on the ellipsoid,

such that, _Sgis related to 8g* through Poisson's upward continuation integral (Heiskanen

and Moritz, 1967, p. 35). The quantity 8g* possesses no physical meaning, as the

surface value 5g does, its only purpose being to enable use of convenient analytical

formulas. Relating the two quantities through the upward continuation integral, ensures

that the set of 8g* values on the ellipsoid, reproduces the set of 5g values on the surface,

and consequently the external potential determined from 5g* is identical to the one that

would have been determined from 8g. Strictly speaking, the use of Poisson's integral is

valid _ if the reference surface of 5g* is lw_.l.l.l.l.l.l.l._below the physical surface of the

Earth, a condition which is not satisfied (in general) by the surface of the mean-Earth

ellipsoid. This problem led Bjerhammar (1962) to introduce the concept of a spherical
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reference surface for 8g*, completely embedded in the Earth. The validity of Poisson's

integral is also ensured if one introduces an embedded ellipsoid, confocal with the mean-

Earth one, as a reference surface for _g*. This way analytical continuation has to be

performed over shorter distances, which is advantageous from the accuracy and

convergence standpoints, while the embedded ellipsoid concept does not add significant

complexity to the formulation; all that it requires is to reckon ellipsoidal heights from the

embedded, instead of the mean-Earth ellipsoid in the following formulas.

Let now Rb denote the radius of an embedded sphere. Application of Poisson's

integral to the harmonic function rSg yields:

(rSg)p = Rt_r_-R_) f( RbSg* do

4g JJo 13 (2.82)

where the notation could be read from Figure 3 (substituting Rb for R used there). Since

_Sg* is the unknown quantity, the integral equation (2.82) needs to be inverted.

However, there exists no integral formula that inverts (2.82) (Heiskanen and Moritz,

1967, section 8-10), hence the solution of (2.82) can only be obtained numerically, with

successive approximations. To this end, it can be shown easily (ibid, p. 318) that (2.82)

may be written in the form:

t ltII,,8gp-tSgp= _ _ do

(2.83)

where :

D=L

(2.84)

The location of the '*' quantities on the embedded sphere is determined by projecting the

surface points to this sphere along the radial line, i.e. the surface point and its projection

have the same geocentric latitude. Approximating

rp _- Rb + hp , (2.85)
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expandingt2 andD3 in powers of hp/Rb, and retaining only terms linear in hp/R b, one

can easily show that (2.83) takes the form:

8g; - _gp- h - 8gp+T/Jj to3
(2.86)

where :

lo = 2Rbsin _ (2.87)

Equation (2.86) lends itself to an iterative scheme for the computation of 8g_ which
IIJ

is initialized by setting 8gp(o) equal to 8gp, as described for the case of gravity anomalies

by Heiskanen and Moritz (1967, p. 318). Moritz (1966, p. 60) has shown that under the

assumptions made above to derive (2.86), and to the first order of hp/Rb, this equation

coincides with the 'gradient solution' to the analytical downward continuation problem,

i.e. the terms inside the brackets in (2.86)represent (08g'/Or). The numerical

. implementation of (2.86) on the other hand is all but trivial, since the vertical gradient

required has a very localized behavior and thus its accurate estimation requires very dense

observation coverage around the computation point P. Usually, such coverage is not

available. Employing assumptions regarding the correlation of the observable with

elevation, and making use of available detailed elevation information, an approximate

solution to (2.86) may then be evaluated, as was done by Wang (1988) for the case of

gravity anomalies. The problem of analytical downward continuation is a topic on its

own and further discussion will not be given here. Equation (2.86) will be written

schematically:

_ig_ = 8gp + gl (2.88)

where :

gl =-h --2-8gPRb + 2g) oJ t7
(2.89)
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As far as the use of an embedded ellipsoid is concerned, Rb in (2.89) may be

substituted by the Gaussian mean radius (Rapp, 1984, p. 43) at the computation point P,

for that ellipsoid, since global integration in (2.89) is usually truncated only over a small

cap centered at P.

4. Ellipsoidal to Spherical Intem'ation :

The values 8g* obtained from the previous step refer to the surface of the

embedded ellipsoid and thus are still inadequate to be used as input to Hotine's integral

(2.67), which requires values on a spherical boundary surface. This problem, for the

corresponding case of Stokes' integral, is usually treated with ellipsoidal correction terms

as those derived by Moritz (1980, p. 314). However, as Hotine (1969) has pointed out,

the problem may be treated in a conceptually simpler manner; his formulation is

presented next.

First, it is observed that the result of downward continuation, 8g*, represents

radial derivative of the analytical continuation of the disturbing potential (see also

equation (2.81)). Ellipsoidal normal derivatives will be needed next, which formally may

be obtained by adding back (eh)p to 8g_, or, without any loss of accuracy by omitting

altogether (eh)P from (2.81). Hence, 8g_ from (2.88) is hereon understood to represent:

8gp =- (2.90)

With respect to the ellipsoidal coordinate system (0t = cot-lU/E, 8, k) (see also (Heiskanen

and Moritz, 1967, sections 1-19, 1-20)), the ellipsoidal harmonic expansion of the

disturbing potential will be written as:

glo

_ot, 8, _.)-GM _ _ Qnlmt(ic°t°_) -- - ' k)
Rb n=o m=-n _ _nmYnm_8, (2.91)

where:

i =¢rl-

COt0tb =

(2.92)
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andei_is the second eccentricity of the embedded ellipsoid, while Qnm(Z) are associated

Legendre functions of the second kind with argument z (ibid, p. 43). Ynm(8, k) are as in

(2.53), but now evaluated in terms of reduced co-latitude 6. Finally C'enm are real,

ellipsoidal harmonic coefficients of the disturbing potential, referring to scaling

parameters GM and Rb. Making use of the relation (Hotine, 1969, p. 190):

3h N _0_ (2.93)

where N is the radius of curvature of the prime vertical (Rapp, 1984, p. 32), and the

recurrence relation for the derivative of Qnm(Z), one can derive easily:

-N_--ff= m=-n_Q m icot )[ (n+ 1)Qnlrd(icotcxJ+itan_n- m+ 1)Qn+lJmt(icoto0

(2.94)

where the surface ellipsoidal harmonic Tnm(8, ;L) is:

Tnm{8, Z): GM _',e_m(8 ' ;L)
Rt, (2.95)

Equation (2.94) holds true for any arbitrary point on, or outside the embedded ellipsoid.

On the surface of this ellipsoid, one has N = Nb and 0c = Ctb, hence due also to (2.90),

(2.94) becomes:
oo 11

NbSg*= E E (n+ 1)Trim(S, 3.)
m=-n

oo I1

+EE
II=O m=-ll

'itanotb(n - m + 1)Qn+l_ (icoto_,)"

Qnln_(icot0tb)
(2.96)

Using the series expression for Qnm(Z), it can be shown that the bracketed term in the

second summation of (2.96) is equal to:

eb2(n-m+l_(n+m+l)[ (3( 12n + 3 1 + e_ 2 (2.97)
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Thelastrelationis a corrected version of the misprinted relation (29.66) of Hotine (1969,

p. 321). Hence, omitting terms of the fourth and higher order of the second eccentricity,

equation (2.96) may be written as: •

x')=g g In+ X')
IlmO mm-n

+ eb'zZo" ]_n (n-m+2nlXn + m++3 1) Tin(8" _")
IlmO mm-n

(2.98)

Multiplying both sides of the last equation by H(V) as given in (2.65) but with V now

evaluated by:

cos_ - cosSeosS' + sinSsinS'cos(k - _.') , (2.99)

and integrating over the unit sphere (full solid angle), due to (2.66) one obtains:

T(8, _,)= 4--_-If H(_lNbSg* ] (8', _,')dO"

0

(n-m+ 1Xn+m+ 1) I-I(V)Tnm(8', k')do
2n+3

Denoting:

oo I!

n=o m=-n

(n-m+ 1Xn+m+ 1) Tnm(8', _,')
2n+3

(2.100)

(2.101)

and collecting all the previous correction terms together, one finally obtains:

_8, _)= l f f H(V)[Nb(Sg +SgA-ev+ gx) -el(8", _,') do

0

(2.102)



41

Equation (2.102) is the desired integral formula which relates the gravity

disturbance _g (as defined in equation (2.33)), to the analytical continuation of the

disturbing potential on the surface of the embedded ellipsoid, accounting for the ellipticity

of the boundary surface to the second order of the second eccentricity. It can be seen

now that the use of spherical formulas (such as (2.67)), but evaluated in terms of reduced

instead of geocentric colatitudes, introduces two errors; one due to the difference

between Nb and R, and another due to the omission of e_. Both errors are of the second

order of the (second) eccentricity (Hotine, 1969, p. 321). Also, from (2.101) and (2.95)

it is obvious that the computation of e_ requires some a-priori knowledge of the

spectrum of the geopotential. To avoid the use of the ellipsoidal harmonics,

and subsequently the need for transformation of geodetic latitudes (according to which

measurements are usually registered), to reduced ones, Moritz (1980) used series

expansions and formulated the ellipsoidal corrections, for various gravimetric quantities,

in terms of geodetic latitudes and spherical harmonics (ibid, pp. 314-328). Such

procedure, as Moritz himself admitted, results in more complicated expressions, than

those for ellipsoidal harmonics (ibid, p. 316). At present, neither one of Moritz's

motives appears to be a prohibitive factor for the formulation adopted here. The

derivations of Jekeli (1988) and the computer algorithms of Gleason (1988), provide

very efficient means of converting ellipsoidaI to spherical spectra and vice-versa.

Furthermore, in view of the computational facilities available nowadays, conversion of

geodetic to reduced latitudes, even for large amounts of observation locations, can hardly

be considered a prohibitive computational task.

In practical applications the integration in (2.102) is usually extended only over a

small cap, centered at the computation point, while one accounts for the effect of the

remote zone through the use of a global geopotential model. Such procedure requires

modifications in equation (2.102), which affect the evaluation of e_ as well, as it will be

discussed in section 3.1. However, it is instructive here to evaluate the effect of e_on T,

for the case of global integration.

Denote:

H(V) ea(_', %'ides

(2.103)
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Substituting in equation (2.103) £_(_', 3/) from (2.101) and H(V) from (2.66), and

making use of the decomposition formula of the Legendre polynomials (Heiskanen and

Moritz, section 1-15), one obtains:

£_(8,_L)=eb2n_ ° _ (n'm+l)(n+m+l) Tnm(8,_L)= m=-n (2n+3) (n+l) (2.104)

Given now a set of spherical harmonic coefficients of the disturbing potential, C-nm,

referring to scaling parameter R = R M, one sets:

-s _GM R M --
(2.105)

Using the transformation formula (1.15) of Gleason (1988, p.l16), one can evaluate

from fSnm, the ellipsoidal spectrum fnm, while the unifless ellipsoidal coeffecients _ are

f'mally given by:

- e
- GM Jnm (2.106)

The term c]t(_,X) may now be evaluated from equations (2.95) and (2.104), using

efficient harmonic synthesis techniques such as those developed by Colombo (198 la).

Such evaluation was performed here using the OSU89B shperical harmonic

coefficient set (Rapp and Pavlis, 1990), complete to degree and order 180; e_(5,_.) was

evaluated in terms of 1° x 1° area-mean values, while for simplicity Rb was set equal to

R M = 6378137 m, the scaling parameter to which the OSU89B model coefficients refer

(ibid, p. 21,896). The ellipsoidal gravity field to which Cnm refer was defined through

the four constants given in (ibid, p. 21,896). The values of e_(_,X) computed, range

between -19 kgalcm and +17 kgalcm, with a root mean square (rms) value of 6.4

kgal era. Their geographical variation is illustrated in Figure 5.
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In a similar fashion one can derive the corresponding correction term for the case

of integration of gravity anomalies (Stokes' integral); such derivation yields (see also

fflotine, 1969, p. 322)):

'2 _' _ (n-m+1) (n+m+l) Tm(8,g)x)=eb (2n+3)(n-l)
n=O m=-n

- eZsin25 + Tnm(8,7_)
.=0 m=-n (2.107)

where the prime indicates absence of the first-degree term from the infinite sum.

Numerical values computed for the correction term of equation (2.107) (in the same

manner as for the term of equation (2.104)) range between - 36 kgal cm and + 43 kgal cm,

with an rms value of 14.9 kgal cm. Their geographical variation is illustrated in Figure 6.

These values are in good agreement with the corresponding ones computed by Rapp

(1981b), using the procedures of Moritz (1980). Both correction terms (2.104) and

(2.107) are of long-wavelength nature, with more than 99% of their power concentrated

below harmonic degree 36, so that one can account for their effect accurately, using an

existing global geopotential model.

Finally, to evaluate the disturbing potential at the surface point P, one needs to

upward continue the value computed from (2.102) (which refers to the footpoint P* on

the embedded ellipsoid), to the topographic surface level. A Taylor series expansion in

terms of the elevation yields:

[O2T_'_- 2 +

(2.108)

hence, due to (2.90) and (2.89) one finally has:

(2.109)
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2.4 Gravitational Acceleration Information from a Satellite-to-Satellite

Tracking Configuration

The othersourceof gravitationalinformationconsideredhere fortheestimationof

the geopotentialdifferences,comes from the Multiple-High-Single-Low Satellite-to-

SateUitcTracking (SST) configurationwhich isestablishedwhen a low orbitercarryinga

GPS receiverissimultaneouslytrackingmore than one satelliteof the high-altitudeGPS

constellation.

The idea of using SST data for geopotential modeling was originally proposed by

Wolff (1969). The fact that an SST low-low mission alone, with the satellites in polar

orbit, would be capable of providing a truly global, uniformly accurate and high

resolution geopotential model, caused widespread attention to be given to the proposal.

A number of investigations have been performed, aiming to assess the capabilities of

various SST system scenarios. Some of these studies aimed to assess the quality of

mean gravity anomalies and/or geoidal undulations that can be predicted on the surface of

the Earth from the SST data at altitude (local solutions) (e.g. Hajcla (1974; 1978; 1981),

Rummel et al. (1976), Rummel (1980), Rapp and I-Iajela (1979) and Douglas et al.

(1980)). Other studies (e.g. Colombo (1981b), Kaula (1983)) focused on the

development of efficient analytical techniques, that can be used to process the large global

set of observations which an SST mission will acquire during its lifetime, for the

determination of harmonic coefficients of the gcopotential. However, apart from early

experiments of SST between ATS-6/Apollo-Soyuz and ATS-6/GEOS-3 (Kahn et al.,

1982), no dedicated SST system has yet been put into orbit. This is partly duc to the

cosily requirement for drag-free satellites at the low altitudes (e.g. 160 km), considered

for SST missions of the type of the Geopotential Research Mission (GRM) CKeating ct

al., 1986).

In the absence of a dedicated SST mission, the possibility of using the GPS

constellation as the high-altitude component, which continuously tracks a low-altitude

satellite equipped with a GPS receiver, offers a viable alternative. Investigations in this

direction have been already initiated through the U.S. Air Force "Shuttle-GPS Tracking

for Anomalous Gravitation Estimation" (STAGE) mission (Jekeli and Upadhyay, 1990),

where the Shuttle spacecraft is used as the low-orbiter, and an Inertial Measurement Unit
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(IMU) is used in addition to the GPS receiver on the Shuttle, to measure and isolate non-

gravitational accelerations.

The basic mathematical modeling of the observations acquired by an SST

configuration remains unaltered regardless of the mission in question; in contrast, the

signals represented in the observable, strongly depend on the specifications of each

mission (e.g. drag-free orbit, altitude etc.). The modeling of the observable is reviewed

next, while the contribution of various signals contained in it is discussed afterwards.

Consider the motion of two satellites, Si (high) and So (low), as shown in Figure

7. Three mutually perpendicular unit vectors Ej (j = 1, 2, 3) span an inertial frame of

reference (in this section, vectors will be denoted with underbars, for notational

convenience).

Si

rio

nio

ri

El

E_.2

Figure 7. High-Low Satellite-to-Satellite Tracking Configuration.



The following relations are introduced:

Iriol = (r_orio) 1/2 = 0io
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(2.110)

el° - P-_iori° (2.111)

CTonio = 0 (2.112)

Denoting with d/dt time differentiation in the inertial frame, one has:

_iom d_tt(Xio) , (2.113)

for the inertial relative velocity between So and Si, and :

Vio = Pio =/_To_Oio , (2.114)

for the projection of the inertial relative velocity along the direction of the "line-of-sight"

(LOS) between the two spacecrafts. Designated "LOS velocity", vio is a quantity that can

be observed from the Doppler effect on the signal received by the low orbiter.

Differentiation of (2.114), with respect to time yields:

• ..T _o _ ioVio = rio _io + (2.115)

The quantity:

• °Y

aio - Xio _io (2.116)

is the projection of the inertial relative acceleration along the LOS direction. On the other

hand,_io is the rate of change of the LOS velocity. The second term on the right-hand

side of equation (2.115) (centrifugal acceleration) arises due to the fact that eiorepresents

a direction which is rotating with respect to inertial space.
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Assume now that a set of initial state-vectors for both satellites and force model

parameters for the forces acting on them are approximately known. Based on such

information one can compute an approximate value for';'io as:

• c {._.c 'tT c .c _T.c
rio = t!iol gio + (l_io} _ io (2.117)

However, since neither the initial state-vectors, nor the force model parameters are

known perfectly, one has:

• "C

_/'io = Vio - Vio , or (2.118)

8_io= _(2fToeio) + _(l_:o/_io) (2.119)

where:

•.T (._r.C_T c_(r io eio) = ..Trioeio- io] C'io

_o_io)= .T •rioCio- (tfo)'i% (2.120)

One may now split the total inertial relative acceleration i:io into two parts:

.... NO
_rio = _o +_rio , (2.121)

where [i°o is induced by gravitation, and _iio° is due to all other forces but gravitation,

acting on the spacecrafts Si and So. Accordingly, equation (2.119) takes the form:

= _rq:._,T-, .r_5_'io _[(i"_o)T-Cio] + kt io/-gioJ + _[I'io._io] (2.122)

The first term on the right-hand side of (2.122) will be the focus of the following

discussion. As mentioned before, this term arises due to the errors of the approximately

known gravitational model and satellite positions. Assuming that these errors are small

enough to justify linearization, one has:

• _ _(t':o_io)!
_i"To-_io)=(_i"io}-_,o+ _ ic_i'o+

..T
_(--- io-_io)

O_ri
8Ii

e (2.123)
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where the superscript "G" has been omitted for notational simplicity, and in the following

it will be understood that _o refers to the component of the relative inertial acceleration

induced by gravitation alone. In addition "c" indicates that the partial derivatives are

evaluated at the approximately known positions.

On the other hand, by differentiating numerically the observed Doppler shifts, one

• -" 9b$ where:obtains an "observed" value for Vio, v to ,

X,-obs •
io = Vio + nio (2.124)

and nio represents observational noise in the primary observable, unmodeled (residual)

atmospheric effects, antenna multipath, as well as errors introduced by the numerical

differentiation. Introducing the notation:

Ax_i ° = Q_s " Vio'C (a)

• . NG T .. NG c
_Saino6 = (I io ) .gio- [($ io )e]reio (b)

8Rio = _t_o_io) (c)

(2.125)

one has from (2.122), (2.123) and (2.124):

Tc  (VTo ,o)J
C

•.T I_(_r io-_io) __ri + 8aiNoG + _Rio + £io

O.ri c

(2.126)

where £io contains now apart of the noise nio, the effects of second and higher order

terms omitted in equation (2.123). For the first partial derivative in (2.126), one has:

_(rTo-gio) _ ._ToC}(_io) yT 0(_io)
O_ro " _--_o +'ti° _--_o (2.127)

It can be shown easily (see also (Rummel, 1980)) that:

_(_io)

= p-_.o(I3" _io_o) (2.128)



where13is the three-dimensional unit matrix. Rummel 0bid) also shows that:

 (tio) a(graaV(ro)]_  ro) ,
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(2.129)

where V is the (true) gravitational potential of the Earth, and M the three-dimensional

gravitational tensor, i.e.,

M(_ro) =

t)2V t)2V 02V

0x2 0x0y 0x_z

02V t)2V ()2V

Oy_x Oy 2 0y0z

t)2V t)2V 02V

OZ3X Oz3y OZ 2
._r o

(2.130)

With corresponding derivations for the partial derivative with respect to r_i, equation

(2.126) after regrouping terms becomes:

,T ¢

AVio = (_J_io)gio + {(-g[o)TM(/g) + -1_pC[r,o-"T aio(__o)T] }__ro

-{ _[o)TM(_r_)+ A ['_f_o- aio_o)r]}&ri

+ _a_o° + _Rio + I_io (2.131)

From equation (2.131) it can be seen that the (pseudo) observable A_,io is affected

by (and thus contains information concerning) the following:

(a) The residual (with respect to the reference geopotential model used) relative

gravitational acceleration along the LOS between the two spacecrafts (first term).

(b) The difference between the actual and the reference orbits of the two spacecrafts

(second and third terms).



(c)
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The residual (with respect to the non-gravitational force models used) relative non-

gravitational acceleration along the LOS, Sago.

(d) The residual relative centrifugal acceleration along the LOS, 8Rio.

(e) The random noise on the primary observable, residual atmospheric effects, non-

linear term effects etc., all these effects collectively represented in the term eio.

For the current application, of interest is only (part of) the first term in equation

(2.131), while the rest of the terms represent undesired systematic and random "errors".

In contrast, if for example the intention was to estimate improved orbits for the two

spacecrafts, based on the (pseudo) observations A_'io, then the second and third terms in

(2.131) would have been of critical importance. Since:

8_io = 8._o " 8Xi , (2.132)

and:

8gio = -{---c [I3-(_o)(_%)a] (8_ro - 8_ri) ,
Pio

one can re-write equation (2.131) as:

T _: 3" 0=

+_i_o °+SRio+F-io ,

(2.133)

(2.134)

where the orbit error contributions were separated in the parts referring to the absolute

and relative position errors of the spacecrafts respectively. The magnitude of each term

on the fight-hand side of (2.134) depends on the particular SST configuration in question

(e.g. satellite altitudes, instrumentation etc.), the maximum degree (as well as the

accuracy) of the reference geopotential model used to evaluate A¢io, and the accuracy of

the satellites' ephemeddes. The following considerations pertain to the case where So

corresponds to GP-B (see Table 1), while Si corresponds to one of the satellites of the

GPS constellation, so that:

ro=Ixol= 6971 km



ri = [_ri[ = 26560 km

53

To estimate the magnitude of each term in (2.134) one needs to assume some knowledge

of the terrestrial gravitational field, at least in a global average sense, as described by a

global covariance model (Moritz, 1980, p. 181). The model used here will be defined by

the following anomaly degree variances (see also section 3.4):

cn(mgal 2) =

(a-_2)2(n - 1)2[a21n+29. (C_nm) 2JR2/ m_-_.n

(a-_2M)2(n - 1)2/.-_-In+2 '_" -

343"3408 _21))(0"9988961f+2(n-2)(n

2 < n < Nmax

Nmax<ng3_

360<n <o.

(2.135)

where:

GM = 3986004.36 x 108 m3/s 2

a = 6378137. m

R = 6371000. m

m m

and the Cnm, eCnm are the fully-normalized unitless harmonic coefficients and their errors

as given by the OSU89B geopotential model (Rapp and Pavlis, 1990) (even zonal

harmonic coefficients are remainders after removing the ellipsoidal reference field). The

en values defined above refer to the surface of the sphere of radius R, while Nmax

represents the maximum degree of the geopotential model used to evaluate A¢io.

Considering now the first term on the right-hand side of equation (2.134) one has:

1(8"_r'o) ,ol<l '_rolIgrad[ l_rz)]l=l  ro (2.136)

where _ is the disturbing potential with respect to the reference model used (i.e., "_

represents the commission error of the model up to degree n = Nmax, and the omission

error from n = Nmax + 1 to infinity), and 8gin is the gravity disturbance implied by the
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aforementioned model (i.e. 8g m = - _'rm//0r ). The difference in direction between the

actual gravitational acceleration and the one implied by the model has been disregarded in

(2.136). In a spherical approximation, which is sufficient for the magnitude estimates

sought here, one has (see also (Jekeli, 1979)):

lJ-' ro2/ ! (2.137)

and similarily, for the high-altitude satellite:

rms(i) {vat[ (Si:'il ©i_] }_/' cJR2r+2/_&

The cross-rms of the residual accelerations of the high and low satellite, assuming radial

arrangement of the space_'afts, as the _ -- 0 notation indicates, is given by (;ekeli, ibid):

.. ,T ,T C
rms(i, o)= {cov[ (8_ri) -¢_o, (8i"oi __io]_=o} _&

_n - 1 ! "_riro! j (2.139)

This cross-rms is maximized for radial arrangement of the satellites, enabling a worst

case study of the effect of its omission. In addition, the rms acceleration difference

between the low and high satellite (assuming radial arrangemenO, is given by:

rms(o- i)= {var[ (_ii"io)r_crj}_/' -, [rms:Z(o) - 2rms2(i, o) + nns2(i)] _/2 (2.140)

These quantities have been evaluated using the degree variances defined in (2.135), and

approximating infinity by n = 36000 in (2.137) through (2.139). The results for various

degrees of truncation (the variable Nmax appearing in equation (2.135)), are given in

Table 2.



Table2. RootMeanSquare(rms)ResidualAccelerationMagnitudeWith Respectto
OSU89BModelCompletetoDegreeNmax(All rmsvaluesarein mgals).
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Nmax

2

4

6

8

10

20

rms(i)

0.94106 x 10- 2

0.32439 x 10 -3

0.16776 x 10- 4

0.55717 x 10- 5

0.55323 x 10-5

0.55323 x 10 -5

rms(o)
10.748

6.391

4.228

2.784

1.865

0.583

rms(i, o)

0.27752

0.37761 x 10-1

0.68755 x 10- 2

0.11287 x 10- 2

0.25036 x 10 -3

0.18081 x 10 -3

rms(o - i)

10.741

6.391

4.228

2.784

1.865

0.583

From Table 2 it can be seen that a state-of-the-art reference gravitational model

(developed in the absence of any of the missions discussed in section 1.3) and truncated

to a degree as low as eight is enough to justify the assumption that the residual

gravitational acceleration at GPS altitude is zero, thus introducing an error no larger than

about 10 -3 mgal (see also (Jekeli and Upadhyay, 1990)). It should be noted that Jekeli

and Upadhyay (ibid), consider the reference model up to Nmax errorless, thus showing a

monotonic decrease for rms(i) as Nmax increases; here rms(i) stabilizes at about

0.6 x 10 -5 regal after Nmax = 8, due to the commission error of the lower degree

harmonics.

The effect on Avio of the orbit errors _ o and _Sri of the low and high satellites is

considered next. For this purpose, it is assumed that a global network of tracking sites

on the Earth, simultaneously co-observes the GPS satellites being tracked by the low

orbiter, as it will be the case for all the missions discussed in section 1.3 (Pavlis, E. et

al., 1990). In such case the orbits of the GPS satellites and the low orbiter can be

estimated geometrically from differential GPS observations. Yunck and Wu (1986)

carded out simulation studies to assess the accuracy of such orbit determination for

TOPEX, and concluded that decimeter accuracy orbits are attainable with as few as 10

globally distributed tracking stations. The orbital accuracy in such non-dynamic

solutions is limited by the GPS data noise, the ground station position errors,

tropospheric and higher order ionospheric effects and antenna multipath, error sources

that have no significant dependence on altitude (ibid, 1986), so that 10 cm is also a

realistic (and probably too conservative) estimate for the orbit error of GP-B.



Approximating the gravitational tensor M(X) by:

[,M(I')_ GM 0 1
"lr13 0 0-
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(2.141)

which is sufficient for order of magnitude considerations (see also (Jekeli and Upadhyay,

1990)), and denoting by er the radial component (which is the most crucial for the current

application) of the acceleration error induced by radial orbit error 8r, one has (see

equation 2.134):

Low satellite (So) : c_ (mgal) ,_ 2.4 x 10-18ro(m)

High satellite (Si)" _ (mgal) _ 4.3 x 10-38ri(m)

while the misregistration of the LOS direction, 5_io, introduces an error es_t,, which

does not exceed:

es_,(mgal) _ 4.2 x 10-2_ 8ro(m)

As it can be seen from the above estimates (which pertain to the GPS/GP-B SST

configuration), the orbit error of the GPS satellite and the misregistration of the LOS

direction introduce negligible acceleration errors. The orbit error of the low satellite

however, introduces an acceleration error that may reach 24 _tgals in amplitude (for 8ro =

10 cm) which can have a significant effect on geopotential estimation at the few

centimeter accuracy level, if its power is concentrated at low frequencies. Colombo

(1990) has shown that systematic errors in the satellite positions significantly affect the

recovered geopotential spectrum only up to about degree 10. In addition, comparing the

results of the analytical approach in the absence of such errors ("best case"), with those

obtained from a complete simulation where satellite orbits were estimated dynamically in

a simultaneous solution along with the geopotential spectrum (Pavlis, E. et al., 1990),

Colombo (1990) verified that systematic orbit errors can be effectively decoupled from

the gravitational signal in such global solutions, as long as their mathematical

representation is accounted for in the adjustment. Accordingly, one way of reducing the

effect of orbital errors on A_;io, is to pre-process smoothed values of the global set of
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SST data in a dynamic mode where the orbital parameters of all satellites and the low-

degree part of the geopotential spectrum (e.g. Nmax = 10) are simultaneously estimated

from the original GPS measurements. A,)io can then be referred to the adjusted orbits

and long-wavelength geopotential spectrum obtained from such global dynamic solution.

In such case, the smoothing of the original measurements is critical, since one wants to

minimize leakage of the higher-frequency content of the measurements to the lower-

frequency part of the estimated geopotential spectrum. However, the global character

(polar GP-B orbit) and the uniform coverage of the data works favorably in the

minimization of leakage effects. Obviously, as the maximum degree of the geopotential

model obtained from the global adjustment increases, the contribution of the residual A_;io

(with respect to this model), to the estimation of the disturbing potential T on the Earth's

surface, decreases. In the limit, if the model extends to the degree corresponding to the

resolution of the data at altitude (Nmax ,,, 55 for GP-B), then only the ground

measurements, in the caps surrounding the computation points provide additional

information for the estimation of T. An alternative way of reducing the orbit error of the

low satellite is the use of laser ranging combined with the GPS tracking in a geometric

solution for its orbit determination (Everitt et al., 1989). In view of the magnitudes of

8Rio and eio, which will be discussed next, the effect of orbit errors in the modeling of

Ax;io does not appear to be a limiting factor. Accordingly, equation (2.134) becomes:

AVio (8i:"o xc_" } -_io + 8Rio + Eio (2.142)

where, in addition, it was assumed that the residual non-gravitational acceleration along

8aio, is negligible. Such an assumption implies that non-gravitationalthe line of sight, No

accelerations have been modeled perfectly as a result of the global adjustment of the SST

data.

The centrifugal term 8Rio is considered next. It can be easily shown (Colombo,

1981b), that:

•T _1._ (._r_ion io}Z = __L_i._rid2cos_
Rio=rio_io =pio - - Pio (2.143)
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where nio is the unit vector perpendicular to the LOS direction as defined in equation

(2.112), and T is the angle between _ io and n io. The geometry of the vectors defined on

the plane generated by Xio and J:io is illustrated in Figure 8.

_io

{_io

.....

I i

' ,_i I
I

I
! !
!

i !

Figure 8. Geometry of the Vectors Defined on thePlane ofxio and$io.

Subtracting the reference value Rib from the true value Rio one has, due to

(2.143), for 8Rio:

8Rio = -Cl_ ic{2cos2_/- -]c-c ]'_rCd2cos2"Yc
Pio - Pio

I

(2.144)

where _c is the angle between t _oand n_o. To obtain a magnitude estimate of 8Rio, it is

justifiable to set:

Pio =' Pie ; cosy* cosyc (2.145)

so that:

_R,o="_ {I,__or-I,_,_oi%:v:-l-lc_lIf"i°12}c°s2"/Cpio
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=-L_{_o_io}COS'___ (_o)_ ioCOS_
PiCo - - Pio - -

_Rio=_l_rolls_olcos13cos_,
Pio

(2.146)

where the total differential 8{/'aioi: io} was approximated by the linear term in its Taylor

series expansion (linearization), and "13" is the angle between [ [o and 8J:io.

The last equation indicates that _Rio becomes maximum when T = 0°(180°), i.e.

when the relative velocity of the satellites is perpendicular to the LOS direction. If in

addition the satellites move in parallel and opposite directions (perpendicular to the LOS),

then the magnitude of their inertial relative velocity becomes maximum, equal to the sum

of the magnitudes of their individual inertial velocities. Under such circumstances the

rate of rotation of the LOS direction is maximized, giving rise to the maximum possible

centrifugal acceleration Rio, as expected. This "worst case" will be considered next, in

order to estimate an upper bound for the magnitude of 8Rio; the "best case" obviously

corresponds to T = 90°(270°), when the satellites move towards or away from each other,

so that _io remains fixed with respect to inertial space and Rio = 0. For the "worst case"

one has from (2.146):

[SRi__-O_o_ioll_ iollcos13[cos_

_ (Ir_"_1+lr_?l)l_ol

maxlSRi__ --2-6-= (I/'_ + 1_1)18_iol
Pio (2.147)

Making use of the energy conservation law (Jekeli and Rapp, 1980, p. 4), linearized with

respect to the reference gravitational model to which 5Rio refers, and assuming that the
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motion of the high-altitudesatellite is perfectly determined from that model, so that

8i: i = 0, one has (see also (Rummel, 1980)):

It:l' ,o (2.148)

where:

(2.149)

and ,_m carries the same meaning as in equation (2.136) given before.

upper bound for the magnitude of 8Rio is given by:

Accordingly, an

(2.150)

An estimate of the disturbing potential difference _io, between the low and high satellites,

may be obtained in a global average sense, considering the radial arrangement of the

spacecrafts, by:

{ /1'rms(Tio)= var['rm(ro)] - 2cov[T (ro), "rm(ri)]v--o+varL'rm(ri)] , (2.151)

using the anomaly degree variance model of equation (2.135) to evaluate the disturbing

potentiars variances and covariances. Approximating:

i_l= tGM_l/2
[ I_rl/ (2.152)

and using the nominal values pertaining to the GPS/GP-B configuration, estimates of

ma_SRi_ have been computed, for various degrees of truncation, Nmax, of the reference

model. These are given in Table 3.



Table3. Estimates of the Maximum Value Attainable by 8Rio for Various Degrees of

Truncation of the Reference Model (Units are mgaJs).

Nmax

2

4

6

8

10

20

rna_SRi_

2.201

0.865

0.444

0.234

0.127

0.023

1 1.910 (*)

18 0.097 (*)

(*) Values correspond to the High-Low mission considered by Rummel (1980).
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For comparison purposes, two additional values are listed in Table 3. These refer

to the High-Low mission considered by Rummel (1980), where the altitudes of the high

and low satellites were 35500 km and 250 km respectively. These two values have been

computed using the same anomaly degree variance model as in Rummel's study (ibid, p.

12). Comparing the above estimate for Nmax = 1 (i.e. when T m represents the entire

disturbing potential with respect to the ellipsoidal gravity field) to the corresponding one

of Rummel's (ibid, p. 5, Table 1), it is seen that the former is about 7 x 105 times larger

than the latter. Colombo (1981b, p. 15) estimated the magnitude of the centrifugal term

8Rio for a Low-Low mission, and found a value 3 x 104 times larger than corresponding

estimate of Rummel (1980, p. 5, Table 1).

The reason that both the current estimates, as well as those of Colombo, are so

much larger than those of Rummel, is identified here to be an unjustifiable substitution of

the term  [Itiol2],by the term [ tio[2, in Rummel's derivations (ibid, pp. 4-5). Such

substitution yields an expression for the average magnitude of _Rio (ibid, p. 5, equation

12), which is in fact independent of the relative inertial velocity of the two satellites, thus

contradicting the underlying physical meaning of 8Rio. Also apart from underestimating

the magnitude of 8Rio, such substitution implies that _SRio is always positive (Jekeli and

Upadhyay, 1990, p. 10,984), while there is nothing dictating a fixed sign for 8Rio,
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despite the fact that Rio itself is a non-negative quantity (see equation (2.143)). As it can

be seen from equation (2.146), 8Rio carries the same sign as cosl3, and the sign of cosl3

cannot be determined since it depends on the relative orientation of X_o and the unknown

vector 8_ io. To the author's knowledge, this erroneous substitution appeared originally

in Hajela's derivations (1978, p. 5, equation 2.2), and has been adopted afterwards in a

number of investigations including the recent study by Jekeli and Upadhyay (1990). The

maximum magnitude of 8Rio for a reference model complete to degree and order 8 is

about 0.4 mgals for the STAGE mission considered by Jekeli and Upadhyay (ibid),

hence 8Rio cannot be neglected in view of the 0.3 regal total noise level that they have

estimated for the (pseudo) observations AX;io 0bid, p. 10,983).

The existence of the centrifugal term 8Rio in equation (2.142) makes the analysis

of the SST observational system, in terms of the pseudo observations Agio, practically

untractable. In contrast, such a problem is not encountered if the primary GPS

observables (carder phase and pseudo-range) are used in a global dynamic solution for

the simultaneous estimation of satellite orbital parameters and geopotential coefficients

(Pavlis, E. et al., 1990). In the current application, which is of local character, to

minimize the magnitude of 8Rio, so that its omission can be justified, one may consider

the following strategies:

(a) Use of a higher degree reference geopotential model for the formation of Ax;io. As

it can be seen from Table 3, a model complete to Nmax --- 20, implies a maximum

expected value of 6Rio of about 23 Ixgals, which may be considered negligible. The

maximum degree of the reference model however, should be selected with due

consideration to the ratio of the residual signal to the noise of the pseudo

observations A_'io as was discussed before.

Co) In a Multiple-High-Single-Low SST configuration, where as many as 8 GPS

satellites are being tracked simultaneously by the low orbiter, one may select for the

formation of A_'io pseudo observations, those GPS satellites for which the quantity

=p- oIt i%1cos 
(2.153)
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is minimized (and/ordoesnot exceedapre-establishedthresholdvalue). Suchediting

criteria shouldbeconsideredin conjunctionto othergeometricrequirements(suchas

minimum elevation anglesof the GPSsatellites). It is obvious that suchanediting

procedureintroducessubstantialcomplexityto thedataprocessingalgorithm.

"Finally,thenoise eio of the pseudo observations Avio is considered following the

lines of Jekeli and Upadhyay (1990). As it can be seen from their analysis (ibid, p.

10,976, Table 2), in the non-differential mode of observation, the major error source

contributing to eio arises from the frequency instability of the GPS satellite oscillator.

This error source effectively cancels out if single differences are formed between the

phase measurements to a GPS satellite as observed by the low orbiter and a ground

receiver. In such case, the total error Eio of the residual acceleration along the line-of-

sight, for the case of GP-B (10 cm orbit error, drag-free instrumentation), was estimated

to be about 0.2 mgals.

In the following error analysis however, it will be assumed that the SST

configuration contributes information on the vertical component of the gravitational

acceleration at altitude. The error of the vertical component of the acceleration may be

approximated by multiplying eio by the vertical dilution of precision (VDOP) (Jorgensen

1980) as described by Jekeli and Upadhyay (1990, p. 10,978). In their analysis it was

found that for the Shuttle being the low orbiter, a representative value for VDOP was

about 2. Adopting the same value for GP-B (which is a rather conservative assumption),

one finally obtains 0.4 mgal error for the vertical component of the residual gravitational

acceleration at GP-B altitude.



CHAPTERIII

GLOBAL MEAN SQUAREERRORESTIMATION

As it was discussed in section (1.3), the geopotential differences between points

separated by ocean, whose geocentric positions are known with accuracy of a few

centimeters, will be estimated by combining information from:

(a)

(b)

(c)

gravity disturbance measurements on the Earth's surface

gravitational acceleration "observations" at the altitude of a low Earth

orbiter

a global geopotential model.

The development of appropriate analytical tools that can be used to estimate the

expected accuracy of the resulting geopotential differences, based on assumptions related

to the spatial arrangement and the uncertainties of the input data, is the subject of this

chapter. In practical applications, the geopotential differences will be estimated using

least-squares collocation 0sc) (Moritz, 1980) since this technique can combine efficiently

observations of different functionals of the gravitational potential, and assures that the

resulting estimates are based on optimal use of the information contained in the

observations. In addition, lsc can be used to assess the expected uncertainty of the

estimated values, and thus offers one possibility for the means with which the current

error analysis could by conducted.

For given error properties of the input data, the (true) error of the estimated

geopotential difference depends on the relative positions of the observation points with

respect to the points to which the difference refers, as well as on the absolute positions of

the latter. In that sense, the error of the estimated geopotential difference between points

which lie on areas where the gravity field changes rapidly is likely to be larger than

between points which lie on smoother areas of the field. The (squared) error estimate

obtained from lsc on the other hand, represents a _ value, whose meaning is

64
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as follows (Colombo, 1980). Keeping the relative positions of observation and

estimationpointsfixed, subjecttheentirepatternto all possiblerotationsoverthesphere.
After eachrotation measurementsare taken, the lsc estimation is performedand the

correspondingtrue estimationerror is evaluatedsomehow.The global averageof the

squaresof theseerrors,representsthesquarederrorobtainedfrom lsc. As aresultof the

useof homogeneousandisotropiccovariances,if therelativegeometryof observation

andestimationpointsremainsfixed, andsodo theerrorpropertiesof thedata,theerror
estimateobtainedthroughlscwill remainunchangedregardlessof theabsoluteposition
and orientationof the whole observation/estimationpatternon the terrestrial sphere.

Moreover,asit is well known,thelscestimator,by its definition,ensuresthatthisglobal

meansquareerror is the minimum amongthecorrespondingonesof anyother linear

estimator(Moritz, 1980,pp. 122-132). This property, as well as the ability of lsc to

accommodate different data types and arbitrary spatial arrangements of

measurement/estimation points, are responsible for the wide application of the lsc

estimation technique.

To benefit from the above properties however, one must take up the computational

effort of forming and inverting covariance matrices whose dimensions equal the number

of observation points. In actual implementation where the geometry of

observation/estimation points is given and one is interested in the most rigorous

evaluation of the estimates themselfs, as well as their expected errors, such computational

effort is well justified. However, in error analysis studies the relative geometry of

observation and estimation points is more or less a matter of assumption, and one is

interested only in the expected errors of the estimates and not the estimated values

themselves. In addition, if one strives for estimates which will not be significantly biased

by uneven data distribution, it is necessary to impose some kind of requirements

pertaining to the uniformity and spatial density of the measurements. Under such

circumstances, if one is willing to accept additional assumptions that result in symmetric

patterns for the geometry of the observation/estimation points, efficient techniques can be

used to assess the expected errors of the estimates, resulting in large computational

savings. Obviously, the reliability of the error estimates evaluated this way, depends on

how well the assumed symmetric data arrangements compare with actual data

configurations, at least in a global average sense.
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Thesimplestway to assess the error of a geopotential difference, estimated on the

basis of a global geopotential model and terrestdal-9_rl_l measurements, is through error

propagation based on truncation theory. As it will be seen however, this technique

cannot be used if gravitational accelerations at altitude are to be included in the estimation.

On the other hand, least-squares collocation using "ring averages" (Colombo, 1980,

section 4.1) can accommodate both data types (either separately or in combination) and is

only restricted by assumptions related to symmetries in the measurement pattern. In that

sense, the use of ring averages provides a compromise which maintains the efficiency of

integral formulas while incorporating the versatility of lsc. The analytical formulation of

these techniques and their intercomparison are discussed next. In addition, the

covariance models for the signals and the noise of the measurements which will be used

in the numerical analysis are presented afterwards.

3.1 Error Propagation Using Truncation Theory

The use of truncation theory for the assessment of the global mean square error of

geoidal undulations estimated from gravity disturbances measured over a cap centered at

the computation point, and a global geopotential model, has been considered variously by

Jekeli (1979) and Sjtiberg and Fan (1986). In the following discussion the notation used

by Despotakis (1987), for the corresponding case of cap integration of gravity anomalies

(Stokes' kernel), will be adopted.

Equation (2.102) of the previous chapter is written for convenience as follows:

H(v)D(_', Z.')do

(3.0

where:

D(5', _.')= [Nb(_g + _igA-el, + gl)-eI_i', _.') (3.2)

The nth - degree and m th - order ellipsoidal harmonics of D and T are related by:

Dnm(5', X') =(n + 1)Tnm(5', 2L') , (3.3)
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as it can be easily seen from equations (2.98) and (2.101). In addition, the solid angle

corresponding to the cap centered at the computation point, is denoted by ac, so that:

o=oc +(o-oc) , (3.4)

and a kernel modification function Wi(V) is introduced, such that:

I-I(v) - Hi(V) + Wi(v) ; 0 _ V < x (3.5)

and the modified kernel Hi(V) is defined through the last equation, given the definition of

Wi(V). Due to (3.4) and (3.5), equation (3.1) becomes:

T(_,_L)--4-_Kff ni(v)n(_"_")d°'4-__ ff ni(v)n(_"_L')d(l

G G- Oc

+

(3.6)

A function Hi (V) is now introduced, defined by:

0 if 0<V_VoHi(v) = Hi(V) if Vo < V < 7t
(3.7)

where Vo is the semi-aperture of the spherical cap _c. Accordingly, equation (3.6)

becomes:

T(_, k) = _ ff [Hi(v) - Hi(V}] D(8', 2t')d(T

+lfl [Hi(v) + Wi(v)] D(8', _,')dcr
(3.8)



68

As long as the modification function Wi(W) is at least pieccwise continuous in the interval

0 < W < g (in which case Hi(V) and Hi(W) will also be piecewise continuous), it may be

expanded in a series of Lcgcndre polynomials, as:

Wi(W)-- _ 2_ WinPn(c°sW)
n=0

where:

(3.9)

Win = W_W)P,(cosw)sinwdw

(3.10)

Similarly, for Hi(W) and Hi(V) one has:

n--O (3.1D

where:
Qin(Wo) = fo x Hi(w)Pn(c°sw)sinwdw

and:

Q'm(Wo) = Hi(W)Pn(c°sw)sinwdw

O (3.12)

Hi(W) =E n2-_-_!-XinPn(c o sv)
n=O

Xin = fo x Hi(w)Pn(cosw)sinwdw

(3.13)

(3.14)
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Making useof thedecompositionformulaof theLegendrepolynomials(Heiskanenand
Moritz, section1-15),and theorthogonalityof thesurfaceharmonics,it canbeshown

easilythatdueto (3.9),(3.11)and(3.13),equation(3.8)becomes:

T(8,_,)=½nZ0: [Xin- Qin(Wo)]Dn(8,_,)+ : [Win +Qin(Wo)]Dn(8, _)

where:

U

Dn(8, _.)= X Dnm(_, X)

(3.15)

m=-n (3.16)

Equation (3.15) is rigorously equivalent to (3.8) and provides the "frequency

domain" counterpart of the latter. From (3.15) and (3.3) it can be seen that the quantities

Xin and Win should fulf'dl the relation:

Xin +Win --_ ; n>0
n + 1 (3.17)

which provides the means of evaluating Xin, without performing the integration (3.14),

once Win has been evaluated.

For the purpose of practical implementation, one has to consider that one part of

the available information (the _avity disturbance measurements) represents "space

domain" quantities, while the other part (the gl-0bai geopotential model) is given in terms

of spectral components. It is thus reasonable to seek a combination of equations (3.8)

and (3.15) such that both kinds of information can be considered simultaneously in an

efficient manner. Obviously, such a combination is meaningful only if the cap

measurements are more detailed and/or accurate than what can be deduced for their values

from the global model, and the cap does not extend to _ = re. In that sense, one has from

(3.8) and (3.15):

T(_, _.)= _ ff Hi(v)D(8', Jk')do + 2]- _= [Win+ QintVo)] Dn(_i, JL)

oc (3.18)
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whereby the integral term in (3.18) represents the cap contribution to T(8, _.), implied by

the modified kernel Hi(V), and the infinite sum represents the remote zone contribution to

T(8, _,) implied by the original kernel H(V) plus the cap contribution of the kernel

modification Wi(_), i.e.

0--ff¢

(3.19)

Equation (3.18) (which is rigorously equivalent to both equations (3.8) and

(3.15)), forms the basis upon which a computational formula suitable for practical

implementation can be developed. Obviously, different choices of the modification

kernel Wi(v), yield different estimators of T(5, _.), with varying properties. However,

regardless of the choice of Wi(V), equation (3.18) states that to determine the true value

of T(5, _.), requires continuous and errorless data D(5', _,') inside the cap of integration

¢_c, and perfect knowledge of the spectrum Dn(5, X) up to infinite degree. In practice,

none of these requirements can ever be fulfilled; cap measurements can only be acquired

at a finite number of discrete locations and are contaminated by observational noise, and

in addition the knowledge of the spectrum extends to a finite degree and is imperfect.

The errors that these imperfections induce to the estimated value "r(5, _.) of the disturbing

potential are examined next, along similar lines to the derivations of Christodoulidis

(1976).

In practical implementation, the cap integration in (3.18), has to be replaced by a

finite summation, since the function D(5', _') is not given in an analytic form but has

only been sampled at discrete locations (Heiskanen and Moritz, 1967, section 2-24). To

avoid biasing the result of this numerical integration, due to uneven distribution of the

point measurements, one usually forms from the original point data, a set of area-mean

values on a fine grid (e.g. 2' x 2'), covering the entire cap _c (Despotakis, 1987). It is

assumed hereon that the cap data consist of area-mean values _iij, on an equiangular grid

in terms of spherical distance V and azimuth ot (AV = Ao0, centered at the computation

point P(5, _,). Note that V and ot are evaluated from ellipsoidal coordinates (5, X) and

(5', _'). The indices (i, j) identify the location of the compartment to which the area-

mean value refers, in a two-dimensionM array where:
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i = 0, 1,2, ...,Nr - 1 ; j - 0, 1,2, ..., 2N - 1 (3.20)

As illustratedin Figure9, thenumberof "rows"(or "rings")of area-meanvaluesaround

thecomputationpoint isNr, whileeachring contains 2N compartments, where:

N- _ (3.21)
Acx

j=0

1 j=l

r'*-- Aot /

_ __ II 2

Nr

Figure 9. Arrangment of Cap Data Around the Computation Point P.

In addition, the estimated area-mean value _iij, differs from the corresponding true value

"Dii, by the tree error _j, so that:

Dij = D_ + _'_j (3.22)

As far as the available spectral information is concerned, a finite number of harmonics,

Den(8, X_ up to maximum degree M, is assumed to be given. These are contaminated by

commission error eDen(8, X), so that:
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Dn(8, Z)"-De(8, _.)+F-_n(8,_.) ; n = 0, I,....M (3.23)

where Dn(8, _.)represents the true value of these harmonics. Based on T)_ij and Den(8, _.),

the following estimate of the disturbing potential is evaluated:

Nr-I Jfl

2N-I

T(_' _')= _ i=0Z _ D_ Hk(_/)dt_

aij

M

where aij is the solid angle (area on the unit sphere) corresponding to the (i, j)th

compartment, and the subscript k was used above to discriminate different kernel

selections. The true error of the estimate T(8, _.) is given by:

C'r(s,x)='r(_,x)-_(_,x) , (3.25)

so that, taking into account (3.18), and (3.22) through (3.25), one has:

C"[(_, _)- EI(_, _)+ E2(_, _)+ E3(_, _)+ £4(5, X)

where:

(3.26)

og

Nr-12s-1 #"#"

Z j___=0DijJ_Hk(_/)i=0
aij

Nr-1 2N-I cjfl
i=0 j=0

oij

d_

M

_,(s,_)=½ X Ew_+_vo)3_(s,x)
n=0

2n=._-M+1

(a)

(b)

(c)

(d)

(3.27)



73

error componentsThe following nomenclature will bc used for the above

(Christodoulidis, 1976):

el : sampling (or discretion) error of the cap integration

e2 : propagated error of the cap data

e3 : commission error of the geopotential model

e4 : omission error of the geopotential model.

It should be emphasized that eD_.j refers to the area-mean value of the (i, j)th

compartment, and not to the original point measurement, although in practice, for

compartments as small as 2' x 2', the estimated error of such area-mean value differs

very little from the corresponding error of a point measurement.

The error component el(8, _.) is considered next in detail. The following notation

is introduced:

e1(8, _.) = a(8, X) - b(8, 2L) (3.28)

where:

a(8, _.)=lffHk(V)D(V,X')do (a)

oc
(3.29)

Nr-I 2N-1 ff

oij

From equation (3.15) one has immediately:

a(8, X.) =½ X [Xkn- Qkn(Vo)]Dn(8, X.) ,
n=0 (3.30)

while for b(8, _.), employing in a discretized manner the same technique used before to

derive (3.8) from (3.6), one can write:



b(8,_.)= bl(8,X) - b2(8,X)
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(3.31)

whc_:

bl(_, _,)=4_I_._ 2N'I f[

oij

2s-I ffHk
Z'Dij (_) dob2(8, _,)=4-I-_

i=0 j=0
mj

(a)

(b)

(3.32)

Consider the term bl(8, X) first; due to equation (3.13) and the decomposition formula:

n

_L_ Z vm( ,x)vm(s',
2n + 1 m=-n (3.33)

equation (3.32a) becomes:

if0 j=0 n=0 2 2n + 1 m=-n

oij

::::0

N-I 2N-I flbl(_,_,)= 8J_-g Z Z'Dij_Xkn _'Ynm(_,_,) "Ynm(_r, _.") dO
i=o j=o n=0 m=-n (3.34)

oij

The coordinates of the variable point of integration (8', _.'), are related to the integration

variables spherical distance ¥ and azimuth cc with respect to the computation point

P(8, X), by the well known formulas (Heiskanen and Moritz, 1967, p. 113):

cos_ = cos_osS' + sinSsinS'cos(X'-X) (a)

sinS'sin(X' -_.)
tantx= (b)

sinScosS'-cosSsinS'cos(_.'-X)

(3.35)
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and the integral over aij will be denoted by IYnm(i,j) so that:
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If t¥i+Aytctj+Aa"Ynm(_ r, X')d(r =/ / -Ynm(8', _,') sin_d_dct =
.r¥i .raj

aij

IYnm(i, j) (3.36)

Re-arranging the order of the summations in (3.34) one has, due to (3.36):

bl(_' _')= _ n___oXkn I"Ynm(8, _, Z Z DijIYnm(i, j

m=-n i=O j=O (3.37)

The expression inside the brackets in (3.37) is readily recognized to represent a

quadrature formula (Colombo, 1981a), according to which an estimate Dnm of the true

spectrum Dnm of D(8, k) may be obtained, given a global set (N x 2N) of errorless area

mean values Dij, on the equiangular grid A_ = Act with pole the computation point

P(8, _). Hence:

N-1 2N-1

= "1- _ Z Dij IYnm(i, j)Dnm 4_
j=O (3.38)

It should be mentioned here that the coefficients _)arn obtained from (3.38) refer to

the coordinate system associated with the (8, _.) grid, although the area-mean values Dij

are given on the (_t, o0 grid with pole the computation point P(8, _.). Although in theory

the two grids do not have to coincide, this incompatibility makes the practical evaluation

of the quadrature formula (3.38) extremely inefficient, basically because the computation

of integrated Legendre functions (upon which the evaluation of IYnm(i, j) depends),

cannot be accomplished using efficient recursions as those derived by Paul (1978).

However, equation (3.38) is used here as an intermediate step to provide insight and aid

in the derivation of the final expression for the sampling error. As it will be seen, the

final formula for the sampling error does not require for its evaluation the actual

implementation of (3.38). Due to (3.38) equation (3.37) becomes:

oo

bi(8,_.)= _-_ Xkn_)n (5, Z)
n--O (3.39)



where:
n

in-- -11

76

(3.40)

Following the same procedure for b2(a, k), and taking into account equation (3.31), one

obtains for b(a, _.):

oo

1 n=_O[Xkn- Qkn (Yo)] E)n(a, _)b(8, =
(3.41)

Hence, due to (3.28), (3.30) and (3.41) the sampling error el(a, _,) finally becomes:

El(a, _) = 1 Z [Xkn- Qkn (Vo)]Sn(a, _t,)

n=0 (3.42)

where:

Sn(a, _) = Dn(a, _,)- 5n(a, _)= _ [Dnn- 5nmJ-'_'nm(a, _,)

m=-n (3.43)

and Sn(a, _.) represents the n th - degree surface harmonic of the sampling error associated

with the quadrature formula (3.38).

Proceeding along similar lines, one has for the propagated error e2(a, _.):

½n._0 _ N-1 2N-1 )1E2(a, _) = [Xkn - Qkn(l_/o)] "Ynm(a, _(4-Li__Zo Z EDiCj IYnm(i, j
= m---n j=o

(3.44)

One may view the true errors eD_j of the area-mean values as discrete samples of an

error function defined over the full solid angle (unit sphere). To be more precise, the

totality of the eDi_ values represents one realization of a stochastic process on the unit

sphere (Moritz, 1980, p. 279). This error function can be expanded in surface

(ellipsoidal) harmonics, and the coefficients enm of such expansion may be approximated

by the following quadrature expression, given the discrete samples _j :

N-1 2N-1

Enm _" __L_I Z Z EDiCj I_'nm( i, J)

4_l]n i=0 j=0 (3.45)
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where13nis thePellinensmoothingfactorof degreen, which correspondsto a spherical

caphavingareaequalto theareaof anequiangularcompartmentin thering with i = N/2
(the "equator"of the (_, ct) grid). It is acknowledgedherethat the useof smoothing

factors 13nwhich are independentof _ (or equivalentlyof the ring index i) is only an

approximation,sincetheareaof theequiangularcompartmentson the(_, _) grid varies

with V asit canbe seenfrom Figure 9 (detaileddiscussionof this aspectis given in

Katsambalos (1979)). Using a complete (N x 2N) set of area-mean gravity anomalies on

an equiangular grid, it has been verified numerically that the spectrum implied by a

quadrature formula of the type (3.45) (ring-independent 13n) differs from the spectrum

implied by a quadrature formula using ring-dependent 13nfactors, by about 15% near the

degree corresponding to the Nyquist frequency (n = N). In view of the fact that the error

properties assigned to the data are to a significant extent a matter of assumption, the

approximation introduced in (3.45) by using ring-independent _n factors appears to be

acceptable. Accordingly, equation (3.44) becomes:

oo

n=O (3.46)

where:

n

m=-n (3.47)

The formulation suggested here to model the sampling (or discretion) and the

propagated errors is slightly different than the one originally proposed by Christodoulidis

(1976) and adopted by Despotakis (1987). Christodoulidis (1976) examined alternative

techniques to model the sampling error, and concluded that a computationally manageable

and accurate enough model would be (in the current notation):

Ih(_, _) = 1 _ [Xkn-Qkn(_to)]Dn(_5, _).
n=N+l (3.48)

(The fact that the analyses cited above were made for geoidal undulations obtained from

integration of gravity anomalies is immaterial, since the four error sources identified in

equation (3.27) are present in both integral formula applications.) The model (3.48) is

based on the assumption that the data inside the cap of integration contain spectral
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information only up to degree N, which is related to the size of the data compartment by

the well known rule of thumb given in (3.21). This is one possible approximation;

however, equation (3.48), rigorously interpreted, represents the sampling error for the

case of _9ntinuous coverage inside the cap with band-limited data (containing spectral

information only up to degree N). Such an approximation of the real-world situation

(where continuous coverage can never be achieved, and the spectral content of the area-

mean values is rather difficult to assess), is less realistic, and does not yield a

significantly simpler model, than the model (3.42) proposed here.

As far as the propagated error is concerned, the Pellinen smoothing factors have

been introduced here to account for the fact that area-mean values are used for the cap

integration, while error covariance models in practice usually describe error properties of

point data. Despotakis (1987, equation 2.26) altered the original formula for the

propagated error as given by Christodoulidis (1976, equation 150), by truncating the

error spectrum at degree N, effectively assuming that all error contribution above this

degree is smoothed out from the area-mean values. In the model (3.46) proposed here,

the error tapers off gradually as the degree n increases, since In "-) 0 as n --+ oo.

According to the above, the expected global rms value of each error component

can now be derived. The following definitions are introduced first for notational brevity:

XQkn --Xkn - Qkn(Igo)

= +Q (Vo) (b)]

(3.49)

where it is understood that both XQkn and WQkn depend on the semi-aperture Xgoof the

cap. Taking the total average E (Moritz, 1980, p. 100) of the square of each error

component et(g = 1, 2, 3, 4), one has due to the orthogonality of the surface harmonics:

n=O (3.50a)

and similarly:
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4 n=O

(b)

(c)
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(3.50)

rms2{e4) = 1 E WQ2kndn (d)
n=M+l

where the linearity of the operator E was used, and the following notation was

established:

dn = E[D2(_, )_)] = M[D2n( 5, )_)]

(a)

(b)

 c,j
(d) !

(3.51)

The homogeneous and isotropic space averaging operator M is defined by (Moritz, 1980,

p. 82):

8_2 o =o =o
(o)sinSdSdXdot

(3.52)

In addition, the total average of the products et(A).et(B) (g = 1, 2, 3, 4) of each error

component for two points A and B separated by spherical distance _d is given by

(Christodoulidis, 1976):

rms2[El(A).el(B)] = E[el(SA, _A).EI(SB, _,B)]

=1 E XQ2kn snPn(cOsvd)
4 n=0 (3.53a)



and similarly:

rms_e2(A).e2(B)] = 14 Z ([_nXQlm)2anPn(c°svd)
n=O

M

(b)

rms2[E3(A).E3(B)]= 1 Z WQ_r_InPn(cos_/d) (c)
n=0

Fms2[F.,4(A).E4(B)] =1 _ WQ_dnPn(cOSVd)

n=M+l

(d)
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(3.53)

Since the error components identified in (3.27) originate fi'om independent causes,

it is reasonable to assume that these errors are uncorrelated (it needs to be assumed here

that the global geopotential model has been derived independently of the cap data). In

such case, the expected global rms error of the geopotential estimated by (3.24), is given

by:

4
(3.54)

while the expected global rms error of the geopotential difference eTAB, between the

points A, B separated by spherical distance Ntd is given by (Christodoulidis, 1976, p. 43):

4 }1/2
 s  ,iA)l-Z

l =! l:'l (3.55)

The above formulation enables one to estimate the expected global rms errors in

geopotential and geopotential differences, obtained from the estimator (3.24), once

appropriate models have been established for the degree variances Sn, On, edn and dn.

As far as the selection of the kernel modification function is concerned, two

alternative principles may be followed for the definition of Wk(V):

(a) Deterministic approach: The selection of Wk(V) here is made in such a way, that the

resulting kernel function that corresponds to the remote zone contribution ("truncation
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kernel" - seeequation(3.19)), possesseseigenvalueswhich converge to zero more

rapidly than those corresponding to the unmodified kernel H(_) (Jekeli, 1980). In this

manner, one attempts to reduce the error arising from the lack of detailed data outside the

cap of integration, taking also advantage of the information provided by a global

geopotential model. The increased convergence rate of the eigenvalues of the truncation

kernel is accomplished analytically, by removing the discontinuity of this kernel (Meissrs

method) or the discontinuities of the kernel and its derivatives (Molodenskii's method) at

xg -- _o, as discussed in detail by Jekeli (ibid). Such modifications are made without

considering the error properties of the cap data or of the available geopotential model.

(b) Stochastic approach: The determination of Wk(V) here is accomplished numerically,

by imposing the condition that the resulting global rms error of "r is minimum. Such

condition yields a linear system of equations for the eigenvalues Wkn of the modification

kernel. This approach has been put forward by Colombo (1977), who considered the

minimization of the truncation error only, and was developed further by Sj6berg (1986)

to account for all error sources identified in equation (3.27). The eigenvalues Wkn

determined in this manner depend on the assumed error properties of both the cap data

and the geopotential model.

Despotakis (1987) intercompared Stokes' kernel and its modifications according to

Meissrs, Molodenskii's and Sj/Sberg's techniques, in a global rms error analysis fashion,

as well as in actual geoidal undulation computations. His analysis indicated that in a

global average sense and for cap sizes smaller than about 5 °, the computationally simpler

technique of Meissl is expected to be almost as accurate as the more demanding

techniques of Molodensky and Sj6berg. In Despotakis' actual computations, Meissrs

and Sj6berg's techniques yielded results of practically the same quality (ibid, p. 97, Table

28).

For the following analysis the original kernel of Hotine (k = 1) and its

modification according to Meissrs suggestion (k = 2) will only be considered. For these

cases one has:

Unmodified Hotine's kernel (k = 1)

WI(_) - 0 ; HI(V) - H(_) 0 < _ < _ (3.56)



and the eigenvalues of the kernels WI(V), HI(V), and HI(V) are given by:
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Wln = 0 (a)

2 (b)
Xln=n+ 1

(3.57)

Qln(Vo)- Qn(Vo) ffi H(V)Pn(cOSV)sinvdv (c)

for n > 0. The coefficients Qn(Vo) should not be confused with the corresponding

Molodensky truncation coefficients referring to Stokes' kernel.

Meissrs modification (k = 2)

W2(V) = H(Vo) - Ho ; H2(V) = H(V) - Ho 0 < V < (3.58)

and the corresponding eigenvalues arc:

_on : [ 2Ho if n = 0Wzn= HoPn(cosv)sinvd V _ W_a=
0 if n>0

(3.59a)

X2n =

.__2__-2Ho if n=0
n+l

___2__ if n>0
n+l (3.59b)

Q2.(Vo) = fo [H(v) - Ho] Pn(cosv)sinvdv = Q.(Vo) - Holl

Pn(cosv) sinvdv

The last equation, due to the recurrence relations of the Legendre polynomials (see

Appendix A, equation A. 15), can easily be reduced to:

Qz.(Vo)= Q.(Vo)-
Ho(1 + cOSVo) if n = 0

Ho [pn+l(COSVo) _ Pn-I(cosVo)]
2n+ 1

if n>0
(3.59c)
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The above expressions for W2n, X2n, and Q2n(_o) are strictly valid for 0 < _o < n, due

to the singularity of Hotine's kernel at _ = 0. The case _o = 0 implies that no cap data

are used in the determination of T, hence only the commission and omission error of the

geopotential model contribute to the error of T. In such case the sum of the eigenvalues

Wkn plus Qkn(_o) (which appear in equations 3.27c and 3.27d), always equals 2/(n + 1),

regardless of the selection of the kernel modification Wk(V).

From the numerical point of view, it is obvious from the previous formulation,

that only the evaluation of Qn(Vo) is a computationally complicated process. Jekeli

(1979) developed an efficient recurrence relation for the evaluation of Qn(Vo) (Vo # 0).

His technique was expanded in this study and a similar recurrence relation was developed

for the more general case of Pizzetti's extension of Hotine's kernel, i.e. for the kernel

H(R/r, _) where r > R. The detailed derivation of the recurrence relation for the

truncation coefficients Qn(R/r, Vo), corresponding to this kernel, is given in Appendix A.

In case one postulates the absence of the zeroeth- and first-degree harmonics from the

gravity disturbance, the kernel H(R/r, V) requires corresponding modification (Jekeli,

ibid), and the resulting kernel H*(R/r, V) (i.e., H(R/r, V) less its zeroeth- and first-

degree harmonics), implies a different set of truncation coefficients Q_(R/r, Vo). The

derivation of a recurrence relation for Q_(R/r, Vo) is given in Appendix B.

The zeroeth-degree coefficients Qko(_/i), i = 0, 1, 2, ..., Nr provide an efficient

way for the evaluation of the discretized integral over the cap, as long as the cap

measurements are defined on the (V, a) grid. Denoting the cap contribution to the

disturbing potential by Cap(Vo), so that (see equation 3.24):

Cap(wo)- 1 _ Hk(xg)dt_
i--o j--o

ffij

one can easily see that due to (3.12):

(3.60)

f Hk(V)d(l = Aot[Qko(Xlti) - Qko(Xl/i+l)]

oij

so that (with obvious notation for Qko):

(3.61)
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Nr-I 2N-I ql
(3.62)

Denote:

2N-I 2N-I

J=O J=O

(a)

AQko(i) = _[Qko(i)- Qko(i+ I)] (b)

(3.63)

so that D_ represents the ring-average "observation" of the i-th ring, and AQko(i) the

semi-difference of the two values of Qko at the spherical distances Xl/iand _i+l bordering

the i-th ring. Accordingly, the cap contribution Cap(_o) is given by:

Nr-i

Cap(_o) = _AQko(i)'D_
(3.64)

and this equation demonstrates the fact that the cap contribution to the disturbing potential

is the weighted sum of the ring-average "observations" D_, with weights the quantities

AQko(i). Equation (3.64) represents a rigorous evaluation of (3.60), and is a

consequence of the isotropy of the kernel Hk(_) (no dependence on azimuth) and of the

particular selection of the data grid (V, _x). The form of equation (3.64) is valid even if

the "width" of the rings (i.e. _Si+l - _i) and/or the number of compartments per ring (i.e.

Act) vary with the distance V from the computation point, as described in Heiskanen and

Moritz (1967, p. 120), provided of course that D_ and AQko(i) are evaluated

accordingly. As it is well known (ibid, p. 120) the disadvantage of using the (V, ct) grid
--C

to register the data, is the need to re-evaluate Dij (or -_e) as one moves from one

computation point to another. The alternative of course, is to register the data with

respect to the (8, _.) grid (ibid, p. 117), but then the integration of the kernel function

over the data compartment has to be performed numerically. Provided the original point

measurements are available (so that one can decide upon which grid to use to register the

mean values) and if the computation points are few in number and randomly distributed,

the (_, ct) grid is inherently better suited for cap integration.
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3.2 Error Assessment for the Over-Determined Boundary Value Problem

The formulation given in the previous section for the error estimation of the

disturbing potential (or the disturbing potential difference), obtained from cap integration

of gravity disturbances and a global geopotential model, is applicable only in case the

computation points lie on or outside the sphere to which the gravity disturbance data

refer. This is due to the fact that Hotine's integral formula (upon which the entire

derivation was based) is the solution of Neumann's boundary value problem for the

exterior space of a sphere. The estimation of the error of disturbing potential on the

Earth's surface, obtained from gravity disturbance measurements at altitude requires

alternative treatment. In addition, if observations at altitude are to be used in combination

with terrestrial measurements, then the boundary value problem in question becomes

over-determined, as opposed to the uniquely-determined Neumann's problem solved by

Hotine's integral. The statement of such a problem, for the case where the known

boundary surfaces are concentric spheres may be given as follows (see also Figure 10 for

notation definitions):

"Determine a function T, harmonic in the infinite region outside the sphere (O, RT) and

regular at inf'mity, if its normal (radial) derivatives (-_T/'0r) obtain prescribed values on

the two concentric spheres (O, RT) and (O, RS) where RS = RT + h and h > 0."

Since the boundary values on (O, RT) alone, are sufficient to determine T outside

(O, RT) uniquely (through the solution of Neumann's problem), and since the same

holds true for the boundary values on (O, RS) and the space outside (O, RS), existence of

a unique solution to the over-determined problem requires a compatibility condition to be

fulfilled between the two sets of boundary data. This condition can easily be obtained

from the following considerations. Let D_ and D_ denote the boundary data on the

spheres (O,RT) and (O,Rs) respectively. Let also P(Rs, 0, _.) be an arbitrary point on

the surface of the sphere (O,Rs). Then, due to equation (2.67) one has:

H(_) D_(0', _.')do

(3.65)
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while due to equation (2.64):

Tp = 4g (3.66)

Hence, for a unique value of Tp to exist, I_ and D_ should fulfil the compatibility

condition:

(3.67)

for _ point P(Rs, 0, ;L)on the sphere (O, RS). In that case, due to Stokes' theorem

(I-Ieiskanen and Modtz, 1967, pp. 17-18), T is also uniquely determined outside the

surface of the sphere (O, RS). Due to the relation (2.73) between the radial derivative of

Hotine's kernel and the kernel of Poisson, the condition (3.67) may also be replaced by

the equivalent set of conditions:

RsD_(Rs, O, _.) = RT (R_-4=R_)ff RTDCr(0',t_,Q_'')

O

R_4-_gffDes(O',_.')do=R_'-_gffDFr(O',g')d°

0 0

do (a)

(b)

(3.68)

Note that (3.68a) by itself is equivalent to a condition similar to (3.67), but with its right-

hand side equal to a constant. Condition (3.68b) enforces such constant to be zero. The

condition (3.67) (or equivalently the set of conditions (3.68a, b)) would have been

fulfilled as an identity, if the measurements D_ and D_ were free of errors. In the

presence of observational noise however, to enforce a unique solution to the over-

determined bvp, one could use either (3.67) or (3.68a, b) and set up a least-squares

adjustment of the form F(La) = 0 (condition equations), for D_- and D_. The result of this

adjustment would be a set of Dr and E)s which would fulfil the compatibility condition
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and would be accompanied by a-posteriori estimates of their error properties. The

a-posteriori errors of _)r could then be used in the truncation theory formulation of the

previous section, to estimate the error of geopotential (T) or geopotential difference (AT).

In this manner the additional information provided by the measurements at altitude, for

the estimation of T or AT on the Earth's surface, can be taken into account. However,

the above procedure requires the measurements _r and Ds to provide global coverage, so

that (a discretized form of) (3.67) or (3.68) can be used to set up the condition equations.

The problem at hand however, is of local nature. Terrestrial measurements are given in

the caps centered at the computation points A and B, while the measurements at altitude

are given in the caps centered at SA and SB as illustrated in Figure 10.

Mean sphere of satellite
observations (r = Rs)

/
h /

\ I
/

/
/

/

,%

Mean terrestrial

sphere (r = R)

Figure 10. Geometry of the Measurement and Estimation Points.
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One way to circumvent the inability to use integral formulas for downward

continuation, is to perform the error analysis in two steps:

(a) Using the altitudegeneralizedtruncationcoefficientsderivedin Appendix A, one

T
can estimate the error F..ATsAsBof ATs^SB when the latteris estimated from

terrestrialmeasurements via upward continuation(Pizzetti'sextensionof Hotine's

integral).This errormay then be compared tothe corresponding errore.ATsS^sB

obtainedwhen ATs^sB isestimatedfrom themeasurements ataltitude.

(b) Significant contribution of the observations at altitude to the accuracy of ATAn is

s
provided when ¢.ATsTsB > F.ATSASB. TO quantify this contribution one may use

least-squares collocation where the signal to be predicted is ATAn and the two

independent input signals are: ATs^sB obtained from data at altitude and ATAB

obtained from terrestrial measurements, each input signal accompanied by the

corresponding error as obtained from truncation theory.

Obviously the motivationforusingthe above procedureistotakeadvantage of the

simplicityof errorpropagationthrough truncationtheoryon one hand, and of the "built-

in" abilityof least-squarescollocationto perform the downward continuation(Moritz,

1980, p. 97) on the other. However, as itwillbe shown next,these propertiesmay be

exploitedina more efficientway, ifleast-squarescollocationwith "ring-averages"isused

fortheerroranalysis.In such case allmeasurements are used simultaneouslyin theerror

analysisand the errorestimateeATAB isobtainedinone step.

3.3 Least-Squares Collocation Using Ring Averages

Consider the observations in the caps centered at A, SA (see Figure 10) arranged

in the vector d.A and similarly those in the caps centered at B, SB in the vector tin. These

observations consist of a signal part denoted z and a noise part denoted n, so that

(Colombo, 1980):

dA = Z.A+ n_.A (a) 1

da =gs +ns (b) i
(3.69)
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The signal to be estimated from the data dR and dn is the geopotential difference ATAB. A

linear estimate of this signal has the general form:

A'rAa = _f'rd (3.70)

where:

(3.71)

and the estimator f can always be considered as composed of two parts:

(3.72)

A

Hence, the estimate ATAa becomes:

(3.73)

and its error is given by:

eATAB = (TB- TA)- (fT gh- _glA) (3.74)

w

Applying the total averaging operator E (Moritz, 1980, p. 100) to the square of the

estimation error one has:

_(eATA8) 2] = _(TB- TA) 2 + g gla_Lfa + _ATIIAdTA-f.A- 2(TB- TAkl_fa

+ 2(TB-TA) d_, - 2f__T_Ad_ fn] (3.75)

Assuming no correlation between signals and noise, i.e.

E(Tn T) = F_._n T) = 0 (3.76)



anddenoting:

M(Tr) = Crr (a)

M(T_V)= Crz (b)

M(zzv) = C= (c)

_(nn _) = D (d)
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(3.77)

one has from equation (3.75):

E[(eATAB)2] = 2CTr (A, A)- 2CTr (A, B)+ fl_Czz(B, B) + D(B, B) f].fa

+ f__[Czz(g, A) + o(g, A) fir.A- 2[CTz(B, B) - CTz(A, B) f].fa

+ 2[CTz(B, g)- CTz(A, A) f]fA- 2f__Czz(A, B) + D(A, B) f]fa (3.78)

From all possible choices of linear estimators f one seeks now such an f that minimizes

_(eA'FAB)2]. Imposing the conditions:

(3.79)

one arrives, due to (3.78), to the following linear system of equations in f.A and .(B:

.f_[Czz(A, A) +D(A,A)]- f_[Czz(A,B) +D(A,B)] +CTz(B,A)- CTz(A,A)=0 t

/
- f,_[Czz(g, B) + o(g, a)] + f_[Czz(a, B) + D(B, B)]- CTz(B, B) + CTz(A, B) = 0 J

(3.80)

The following assumptions are now made: the observations d.A and gla have the

same configuration and are characterized by the same error properties. In addition, no

correlation exists between the noise nA and n_a. If one seeks an estimate of ATAB which

should not be significantly biased towards either endpoint of the baseline AB, it is

reasonable to require that at both endpoints A and B, the available measurements have

similar configuration and error properties. Hence, the above assumptions are not

unrealistic from the practical point of view. Under these assumptions one has:



Czz{A,A)= Czz(B,B) (a)1

CTz_A,A) = CTz{B,B) Co)I

CTz(A,B)= CTz(B,A) (c)

D(A, A) =D(B, B) (d)I
!

D(A, B) = 0 (e)/
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(3.81)

and the solution of the system (3.80) can easily be found to be:

f_a=Is

fA -- [Czz(A, A) - Czz(A, B) +D(A, A)]-I [C_. (A, A)- CIT_(A, B)]

(3.82)

(3.83)

Substituting (3.81) - (3.83) in (3.78) one finds that under the previous assumptions the

globalmean squareerrorof ATAB isgiven by:

E[(t_A"rAB)2] = 2[CTr(A, A)- CTr(A, B)- uTc'Iu] (3.84)

m

where thevectorU and thematrixC aregiven by:

U = C_z(A,A)- C_z(A, B) (a)1

C- Czz(A, A) - Cz_A, B) + D(A, A) (b)[ (3.85)

Although the symmetry assumptions (3.81) significantly simplify the computation

of the global mean square error of ATAB, the formation of the covariance matrix C in

(3.85b) requires computational effort proportional to the square of its dimension which is

equal to the number of observations. The formation of C, as well as its inversion, can be

a very demanding computational process. On the other hand, as it was shown in section

3.1, the isotropy of Hotine's kernel in conjunction with the suitable selection of the (_,

a) grid to register the cap data, resulted in very efficient formulas for the computation of

A'rAB as well as its error, in the case of the uniquely determined bvp and the integral

formula approach. In that case, as it was shown in equation (3.64), the cap contribution

to AT, ca was given as a weighted sum of ring-average "observations". It is thus

appropriate to consider the simplifications of equations (3.85a, b) if instead of the
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original measurements, ring-averages are to be used in the least-squares collocation

estimator. Obviously, in such case the number of "measurements" reduces drastically

and this brings significant savings in the formation of the covariance matrices (Colombo,

1980). To follow this approach the analytical expressions for the covariances between

ring-average "measurements" have to be developed first. This is done next.

R

_=_Q

Figure 11. Geometry Associated with Ring-Averages.

Let t and s be two gravimetric quantities. The homogeneous and isotropic

covariance between t and s (both considered as point values) may be expressed as:

cov(tp, SR)- M(tp SR) -'- _ Ots(n)Pn(COSWpR)
n=o (3.86)

where the averaging operator M was defined in (3.52) and Ors(n) (n = 0,1,2...) is the

power cross-spectrum of t and s (i.e., Ors(n) is the global average under M of the

products of the surface harmonics tn(5, _.) times Sn(5, _,)). The ring-average of the

quantity s is def'med as (Jekeli, 1989):

2Lg(_QR) = _ S(VQR, aQR)daQg
o (3.87)



93
wherethenotation can be read from Figure 11. The covariance between the point value

tp and the ring-average value S(VQR) is given by:

O

= _L M[tps(_QR, O_R)] dO_QR
27r (3.88)

O

Thus the required covariance is the average over the azimuth Ok_R of the covariance

between tp and SR, where the point R now moves on a circle of semi-aperature VQR,

centered at Q. Substituting (3.86) in (3.88) one has:

COV[tp. _¥QR)] ° n'fpn' os pR'd R]
O (3.89)

where VPR depends on VpQ, 't_fQR and (Y.Qp (which are constant), as well as on the variable

azimuth O_QR. From the decomposition formula CHeiskanen and Moritz, 1967, equation

1-82) one has:

Pn (COSypR) = Pn (cosVQp)Pn (COSyQR) +

11

+ 2 E (n- m)! [Rnm(VQp, aQpJRnm(¥QR, 0_QR) +
m=l (n + m)!

+ Snm(_QP, U.QP)Snm(¥QR, ff.QR)] (3.90)

where Rnm and Snm are defined in (ibid, equation 1-67). The integral in (3.89) can be

written as:

2_ Pn(COS_tpR) COS(0.O_QR) d0fQR

O (3.91)

so that upon replacing in (3.91) the expression (3.90) for Pn(COS_pR), clue to the

orthogonality of sines and cosines in the interval [0, 2g], one has:



2a Pn(COSVpR) dtXQR ---21t Pn(COSVI_) Pn(COSVQR)

O

and (3.89) f'mally becomes:

COV[tp,-_q/QR)] = E Gts_n)Pn(c°SVQR}Pn(COSVpQ)
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(3.92)

n=o (3.93)

Following similar lines, the covariance between two ring-average values t(V_) (where

Vpv is the semi-aperture of a ring centered at P) and g(VQR) can easily be found to be:

COV [i(_I/FV ), S(_/QR)] = E (_ts(n)Pn(c°sVpv)Pn(c°s_I/QR)Pn(c°s_'PQ)
n=o (3.94)

The general expressions (3.93) and (3.94) can now be specialized for the current

application. If dn denotes the degree variance of the point value of gravity disturbance

(more precisely of-0T/0r), referring to the surface of a sphere of radius R = 6371 km and

8g denotes ring-average value of gravity disturbance, then (see also section 3.4):

CT,T(P, Q) = E [ R _2d"[ R2 _n+Ipn(c°sXFPQ)
n=2 In + 1 ! '_rprQ/

41Q

CT,_s(P , QR)= E (+-_" _'J_--_F,2 _+2pn(COS_QR)Pn(COS-*PQ)
n=2 n 1 "'_ QJ

C'gS,,s,(PV'QR)=n___ 2 d_rl, rQ_ Pn(C°s_/PV)Pn(c°S_/QR)Pn(c°s_PQ)

(a)

(b)

(c)

(3.95)

Note that the summations in (3.95) start from n = 2, i.e., it is assumed that the disturbing

potential does not include zeroeth- and first-degree harmonics.

It should be emphasized here that equations (3.93) through (3.95) refer to rings

formed by point measurements and not to zones of area-mean values in equiangular

compartments as it was the case in equation (3.64). The case of zone rings is
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considerably more complicated, because it requires the use of covariances between area-

mean values as discussed by Colombo (1981a, section 4). For the small size

compartments (e.g., A_ = 2') that will be considered in the next chapter, the difference

between the case of rings formed by point measurements and zone rings will be

neglected.

Based on the above formulation, it is now possible to examine the particular form

that the covariance matrices in (3.85) take, in ease ring-average values are used for the

estimation of ATAa. The following notation is introduced:

_oT: semi-aperture of terrestrial cap

_so: semi-aperttn'e of cap at altitude

AvT: spacing between rings in the terrestrial caps

AxVs: spacing between rings in the caps at altitude

Xltd= VAa: angular separation between stations A and B

R(= 6371 km): mean-Earth radius

h: average altitude of satellite observations

Rs = R + h: radius of average sphere where satellite observations refer.

According to the above, the number of rings in each terrestrial cap is:

NT= +1
AV T

and similarly in each cap at altitude:

NrS= _° +1

Av

so that the total number of rings at each site (A or B) is:

Nr =NrT +Nr s

(3.96)

(3.97)

(3.98)



Accordingly,the square symmetric matrix:

C = Czz(A, A) - Czz(A, B)
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(3.99)

appearing in (3.85b), can be arranged as shown in Figure 12, after the observations on

the Earth and at altitude arc collected in two separate groups.

N $

N T _ NIl .-_

C12

N

I

I

q

u2 I

,......--

Figure 12. Structure of Covafiance Matrix C = Czz(A, A) - Czz(A, B), and Vector U of

Equation (3.85).

Abbreviating by Pn(i) the Legendre polynomial Pn(cOsvi), where Vi is the spherical

distance from a cap center to the i-th ring around it, one can easily see that due to the

equation (3.95c), the elements of C arc given by:

C11(i,j) = _ dnPn(i)Pn(jll - Pn{_d)] (a)
n=2

C,2{i, j)= _ d_R_ss_+ZPn(i)Pn(j_[ 1- Pn(Vd)]
n--2

C22(i, j) = = d R_ Pn(i)Pn(jI1- Pn(Vd)]

Co)

(c)

(3.100)



while,dueto (3.95b), the elements of vector U are given by:

oo

ul{i)= _ n+-_1 nPn(ill - Pn(_d)]
n=2

c_

R +2 .
u2(i) = _ n+--_l _Rss_ Pn(l[1- Pn(_l/d)]

n=2
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(3.101)

Obviously in equations (3.100) and (3.101), Pn(Vd), is used to abbreviate Pn(cOSVd). In

addition Vi is given by:

(i- 1)AV TVi= (i 1)AV s

(terrestrial data)

(data at altitude) (3.102)

Finally, the a-priori error variance of the difference ATAB (i.e., the error variance before

the introduction of the measurements), is twice the quantity:

nffi2 (3.103)

as it can be easily deduced from (3.95a).

The last matrix which needs to be defined so that equation (3.84) can be evaluated,

is the noise covariance matrix D(A, A) appearing in (3.85b). Assuming no correlation

between the errors of the terrestrial data and the data at altitude, matrix D(A, A) will be

block diagonal with one block having dimension N T while the other Nrs. If o T and oSnare

the degree variances of the error of a point gravity distm'bance measurement on the

Earth's surface and at altitude respectively, then the element d(i,j) of D(A, A)

representing the error correlation between the i-th and j-th ring-average value is given by:

d(i, j) = Pn(i)Pn(j)
n=2 (data at altitude) (3.104)
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The aboveformulationfor lsc using ring-averages treats the general case where

observations on the surface of the Earth and at altitude are used simultaneously for the

estimation of ATAB. The problem of estimating ATAB from either group of data alone,

can easily be treated by forming only the pertinent part of the matrices and vectors

previously defined.

3.4 Covariance Models for Signal and Noise

The implementation of the formulation given in sections 3.1 and 3.3, for the

estimation of the global mean square error of the disturbing potential differences, requires

appropriate covariance models to be established that describe, in a global average sense, the

properties of the gravitational signal and the noise contained in the measurements. The

various covariance models considered for this purpose are discussed next.

3.4.1 Global Covariance Models for the Gravity Anomaly

It is well known (Moritz, 1972) that a global covariance model for the gravity

anomaly carries equivalent information with a corresponding model for the disturbing

potential. Hence, covariance models for the gravity anomaly will be considered next, and

the analytical relations will be given to derive the corresponding models for the disturbing

potential or other linear functionals of it (e.g. the gravity disturbance). The spherical

harmonic expansion of the disturbing potential is written as:

oo
n

o,x)--r X  Vm(O,X)
I!=2. m=-n (3.105)

where the notation is consistent with that used in equation (2.52). In an equivalent form

(3.105) may be written as:

n

T(r,O,k) = GM __.,fa_n+l X CnmYnm(O,X)a _r,
n=2 m=-n

Consistent with

anomaly is:

(3.106)

the form (3.106), the spherical harmonic expansion of the gravity



oo 11

Ag(r, 0, _,)= GM E(n-1)/a_n+2 E
a2 xrJn=2 m=-n

and of the gravity disturbance:

oo
n

8g(r, 0, Z,)= GM Z( n + 1)(r_)n+2 Z CnmYnm(0, 2L)
a2 n=2 m=-n
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(3.107)

(3.108)

The following values will be adopted here for the scaling factor "a" and the geocentric

gravitational constant GM in the above and in the following equations:

a=6378137, m /

GM 3986004.36 x 108 m3/s 2/ (3.109)

The surface spherical harmonic of the disturbing potential, referring to the surface of the

sphere of radius:

r = R= 6371000. m (3.110)

is given by:

Tn(r = R, 0, Z,)- Tn = GM (a_n+l E
a _RI m=-n

x)
(3.111)

while from (3.107) and (3.108) it can be easily seen that the corresponding surface

harmonics of Ag and $g are:

Agn(r = R, O, _,)-= Agn = _ Tn (3.112)

8gn(r = R. 0, 2L)- 8gn = n_l- TB (3.113)

The degree variances (Heiskanen and Moritz, 1967, p. 259) of T, Ag and 8g, referring to

the surface of the sphere of radius R, are given by:



(a)

(b)

(c)
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(3.114)

The spatial covariance function of the disturbing potential is given by (Moritz, 1972,

equation 7-26):

{ o2 [n+l

K(P, Q)= b2 kn [_rQJ Pn(COS VPQ)
(3.115)

while, due to the law of propagation of covariances (ibid, p. 97), the corresponding

covariance functions of Ag and 8g are:

R z +2
C(P, Q) = n___2Cn(rprQ)n Pn(cOs _pQ)

(3.116)

and:

n_:2 I ,'.2 _n+2D(P,Q} = dr_-r_rQJ Pn(cos _pQ)
(3.117)

In the notation of section 3.3 one has:

CT,T(P, Q)- K(P, Q) (3.118)

CSg,Sg(P, Q)-D(P, Q) (3.119)

while by the law of propagation of covariance:



CT,sg(P, Q)=- _QQ[CT, T(P, Q)]

n_21 rv _d I-]_--_n+2Ptcos_"_= = _n+l! _rprQ] "_ T_,
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(3.120)

Based on equations (3.115) through (3.120), all covariances needed in section 3.3

can be defined. Due to the relations (3.114), a model for Cn is necessary and sufficient to

enable the evaluation of all the above covariances. Up to a certain maximum degree Nmax

(which at present equals 360), the anomaly degree variances Cn may be obtained from the

harmonic coefficients of the disturbing potential, estimated by combining a lower-degree

set of satellite-derived harmonics with the harmonics implied by a global set of gravity

anomalies. A state-of-the-art global geopotential solution of this kind is the OSU89B

model (Rapp and Pavlis, 1990), which is complete to degree and order 360. Hence, up to

Nmax = 360, Cn may be defined by:

I-C-_-__2(n-1 2 +2 n _ ; 2<n<360Cn
_aX! -_R ! m=-n (3.121)

where C.nm are the fully-normalized unitless spherical harmonic coefficients of the

OSU89B model (even zonals are remainders after removing the ellipsoidal reference

values). Since the disturbing potential is not band-limited to Nmax = 360, one needs to

adopt a model that provides the anomaly degree variances above this degree. The

analytical form of degree variance models developed for this purpose, is usually selected

in such a way that enables closed expressions to be derived that provide the covariance

between various gravimetric quantities, facilitating in this manner the practical

implementation of these models (Tscherning and Rapp, 1974). The parameters of these

models are then estimated in a least-squares adjustment where "obse_ed" degree variances

are in essence the values given by (3.121) from the analysis of satellite and terrestrial data.

In the following discussion two such models are considered, both of the same analytical

form (ibid, 1974):

A(n- I) sn+2
Cn=(n 2Xn+B) ; n>2- (3.122)



whereA, B and s are parameters of the model; s is the ratio:
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S _

R 2 (3.123)

where RB is the radius of the embedded (Bjerhammar) sphere. The first set of parameters

(A, B, s) are those estimated by Tscherning and Rapp (ibid, p. 22) so that the model

(3.122) is given by:

c(21)= 7.5 mgal2( }e0) 425.28 n- 1) (0.999617)n+ 2 mgal 2 . n>2 (3.124)
-n =(n- 2)(n+ 24)

The second set of pararneters (A, B, s) was estimated by Jekeli (1978) and imply the

model:

c(22)= 7.5 mgal 2 /

C(n2) = 343.3408 (n- 1)
-_ +2_l-j (0.9988961) n+2 regal 2 ; n > 2 (3.125)

In Figure 13, the anomaly degree variances implied by the OSU89B model (to

Nmax = 360) and by the models C(in)(i = 1, 2) above, are shown. For comparison

purposes, the anomaly degree variances implied by Kaula's rule of thumb are also shown.

These were computed by (Rapp and Pavlis, 1990):

C(nk)= 192 mgal 2
n+l.5 (3.126)

Note that expressions (3.121), (3.124) - (3.126), all provide the degree variances

referring to the surface of the sphere of radius R = 6371 km. As it can be seen from

Figure 13, from the three models c_ ), c_ ), C(n2) the model c(n2) implies the fastest decay of

the gravity anomaly spectrum at the higher degrees. In addition, one observes a very good

agreement between the model c(2) and the ("observed") degree variances implied by

OSU89B in the range 180 < n < 360. Although the spectral properties of the disturbing,,
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Figure 13.Anomaly Degrcc VariancesImplied by OSU89B and theModels c_ ),c(1),c(n2).
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potential above degree 360 are to a large extent a matter of assumption, due to the lack of

detailed data on a global basis, the overall performance of a degree variance model may be

judged by comparing the variance of certain gravimewic quantities, as implied by the

model, to corresponding values obtained from the analysis of available measurements.

For this purpose, the variance of the (point) gravity anomaly Co, and the variance of the

horizontal gradient of the gravity anomaly G0a are often used (Moritz, 1980, section 22).

Jekeli (1978) has shown that:

o0.-½ :g°
11=2

(3.127)

where the degree variance of the vertical gradient, gn is:

(OAg / (n + 2)2
(3.128)

To calculate Co and GOH, four models for cn are considered as follows:

c,_B)- c(n2)

cn{C) = /cn(OSUS9B) 2 < n < 360

 dn') 36o<.< 

cn(D) = /cn(OSU89B) 2 < n < 360

_c (2) 360<n <_

(3.129)

Using these models and approximating infinity by n = 36000, Co and GOH have been

evaluated. The values obtained are given in Table 4.



Table 4. Gravity Anomaly (Co) and Horizontal Anomaly Gradient (GoH) Variances,

Implied by Different Anomaly Degree Variance Models.
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Model

A

B

C

D

Co(mg_ 2)

1795.0

1106.0

1437.9

1035.8

GoH(E.U. 2)

3542.2

339.3

3533.2

339.3

Based on extensive analysis of gravity anomalies implied by satellite altimetry, as well as

of terrestrial measurements, Rapp (1985) suggested 1100 mgal 2 as an estimate for Co.

The value of (]OH is much more difficult to estimate, since the horizontal gradient is a

signal of high-frequency content and the detailed data necessary for its determination are

not currently available on a global basis. A value of 300 ELI 2 (1 E6tv6s Unit (EU) =

0.1 mgal/km -- 10 .9 s -2) for GOH is a compromise between various estimates obtained from

regional data analyses (Robbins, 1985). Based on these considerations, the composite

model on(D) defined in (3.129), will be used in the numerical analysis to be presented in

the next chapter.

3.4.2 Covariance Models for the Measurement Noise

The estimation of realistic error properties for the data poses an even more difficult

problem than the estimation of the global properties of the gravitational signal contained in

them. Provided multiple independent samples of the measurements are available, one may

estimate an empirical error covariance function for the data by analyzing the differences

between different samples, as it was done by Weber and Wenzel (1982) for the gravity

anomaly data in Europe. In the absence of multiple independent measurements for an

observable, one usually employs an analytical error covariance model to describe its error

properties. The variance and the correlation length of such a model are assigned values

which are representative of the measurement process under consideration. In the

following, three such error covariance models are considered.
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Model I : Dirac Impulse

The error covariance function here is given by:

oO)(V)=cD(v ) ; c>0 (3.130)

where the Dirac impulse (or delta function), D(V), is defined on the unit sphere by Jekeli

(1981):

J-fl   )do=f(0Q,4g D(VI'Q) f(0P'

(I (3.131)

For the isotropic error covariance models that will be considered here, the n th -degree

variance _n is given in general by:

On = 2n+l OOF)Pn(cOs_/)sinxvdv
2 =0

(3.132)

This equation yields for the model oO)(V), due to (3.130) and (3.131):

o(n0 = (2n + 1)c ; n>0 (3.133)

which implies that the rms amplitude by degree of the error is constant, equal to c 1t'2, for

any degree n. This property is the spherical counterpart of the corresponding spectral

property of the delta function, 8(x), defined on the real line -** < x < ,,* whose Fourier

transform is one (Papoulis, 1962, p. 36).

The model o(1)(V), as it can be seen from (3.130) and (3.133), implies infinite

variance and zero correlation length. In practical applications, where one is always

considering a finite number of observations (point values or area-means), the assumption

that observation errors are uncorrelated and that all observations have the same error

variance, is often employed. However, as seen from the above, such assumptions, when

extended to the case of infinite number of point measurements covering the entire sphere,
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lead to unrealistic spectral properties of the noise. For this reason alternative error

covariance models are considered next, which do not suffer from such disadvantages.

Model 2 : Gauss-Markov First-Order

The error covariance function here is given by (Rummel, 1980, p. 44):

o(2_V) = ce-_.v ; c > 0, _. > 0 (3.134)

The parameters c, X are related to the variance (n_) and the correlation length (V c) by:

(3.135)

The degree variances corresponding to o(2)(V) can be obtained from the following

recurrence relation:

X2 +(n-2) 20In2.)
°_n2) = 2n'_- 3 _,2 +(n + 1)2 -

with starting values:

0.(2) = _ lX2++e -x_l (a) 1

{
2 _2+4

; n>2

(3.136)

(3.137)

The detailed derivation of this recurrence is given in Appendix C. In case one postulates

the absence of zeroeth- and first-degree harmonics from o_2)(V), the resulting covariance

model is given by:

t 2 _2+1 2 X2+4 ] (3.138)
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Given the correlation length V e, the parameter _, for this model can be determined by

solving iteratively the equation:

1 - 2e-_-¢ + 1 1 + e -xx + _3_ 1 - e-x't/2cosV_ _ 1) = 0
2 ;L2+l 2 2L2+4" (3.139)

with initial value for k, the one given in (3.135b). The parameter e can then be

determined, given the variance try, by:

c=m_[1- ll+e-_- _ 1-e-Xn] -1
2 X2 + 1 Z,2 + 4] (3.140)

Obviously, the degree variances "_(n2) are identical to 0 (2) for n > 2, while

Model 3: Reciprocal Distance

The error covariance function here is given by:

0(3}{VJ=C(1-k)(1-22_osv+k21-1/2 ," c>O, 0<_.<1
(3.141)

Considering the notation of Figure 3, it can be easily seen that o<3)(V) can be written in the

form:

r-R
a(3)(V) = e----- (3.142)

t

where:

r=R

£ =r (1- 2Z,cos W + 2_2)1/2 a/(b)
(3.143)
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and the form (3.142) explains the characterization "reciprocal distance". Given the

variance _ and the correlation length Ve, it is easy to see that the parameter c is given by:

c=rr_ , (3.144)

while 3, is obtained after solving iteratively the equation:

(1 - 2Xcosv c + X2) 1/2 - 2(1 - _.) = 0 (3.145)

with initial value for Z, given by:

x_o)=1. _ sin___¢
2 (3.146)

The degree variances o O) are given by the closed form expression (Sjtberg and Fan,

1986):

O_n3)= e(1 - X)xn (3.147)

The assumption of absence of zeroeth- and first-degree harmonics from _(3 _V), yields the

model (ibid, 1986):

 uo, + uo,]
(3.148)

The parameter 2Lfor the model _3_V ) is obtained by solving iteratively the equation:

2(I-2_)[{I- 22LcosV e + X2)'I/2-I = XcosVe] - X2 =0 , (3.149)

given V e, and using as initial value for X the one given in (3.146). Once X has been

determined, e is given by:

c = n_ A,-2 (3.150)



Again, _3)= o(3)for n > 2, while _3) =_13) = 0.
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In order to demonstrate the different characteristics of the models

o(2_) andci(3_V), the parameters c and _, of these models were evaluated for a given

value of the variance m_ (taken here to be rn_ = 1 mgal 2) and different choices of the

correlation length xltc (taken as 00.1, 0°.2 and 0°.5). The results are given in Table 5. For

the model _3){V) the radial distance r to the external point P (see Figure 3) from which the

distance t is reckoned is also given. The radius R in this case (see equation 3.142) was

taken to be 6371 km.

Table 5. Parameters Associated with the Error Covariance Models _2_(_)and _3Xv ), for

rr_ = 1 mgal 2 and xlte = 00.1, 0°.2 and 00.5.

Model _c

C

 0Xv) c
r(m)

071 00.2 00.5

0.397136814873D+03 0.198557509013D+03 0.793924826289D+02

1.000012680788 1.000050727516 1.000317237947

0.998990129118

1.002022805406

6377440.4

0.997975830838

1.004060663364

6383922.1

0.994906095858

1.010266183954

6403619.4

As expected, for a given value of the variance rn_, increase of the correlation length _t c

causes decrease of the parameter k for both models _(2_)and_(3_)(see equations

3.135b and 3.146). As _tc increases, more power of the error spectrum is shifted to the

lower degree harmonics, as it is illustrated in Figures 14a and 14b where the degree

variances _(n 2) and -_(n3) are plotted for _e = 00.1 and _c = 00.2 respectively. For the

reciprocal distance model _(3_xl/), increase of Xltc corresponds also to increase of the radial

distance r, as it can be seen from Table 5.
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CHAP'IER IV

NUMERICAL ANALYSIS

Based on the formulation given in Chapters II and III, a number of numerical

experiments were performed in order to assess the accuracy of gcopotential differences

estimated from the gravimetric information contained in a global spherical harmonic

expansion and in the gravity disturbance data in the terrestrial and at altitude caps. The

results of these computations are presented in order of increased complexity of the

estimation scheme employed, starting with the geopotcntial differences estimated on the

basis of a global geopotential model alone and concluding with the addition of gravity

disturbance data on the surface of the Earth as well as at altitude.

4.1 Disturbing Potential Difference Estimated from Current and Future

Global Geopotential Solutions Only

Three global geopotential solutions are considered here. These are designated:

(a) OSU89B

(b) TOPEX

(c) GPB

(a) OSU89B (Rapp and Pavlis, 1990) represents a state-of-the-art high-degree global

model, available in the absence of the missions discussed in section 1.3. The estimated

anomaly error degree variances associated with this model are shown in Figure 13. A

number of comparisons with independent data reported by Rapp and Pavlis (ibid), indicate

that the error estimates of the coefficients do provide a realistic assessment of the quality of

the model. As it can be seen from Figure 13 the spectrum of the anomaly error starts

exceeding the spectrum of the anomaly signal around degree 250. As the degree of the

coefficients increases, validation of their error estimates becomes more difficult because

precise independent information is not available on a global basis with high enough

112
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resolution to enable comparisons. In ocean areas comparisons with GEOSAT-implied

undulations indicated that, although the signal sinks below the noise above degree 250, the

coefficients above this degree do contain meaningful information (ibid, p. 21,903, Table

9). In this study for the implementation of least-squares collocation, the OSU89B

coefficients above degree Nmax = 250 will not be admitted as part of a reference model,

with the understanding that the pessimistic error estimates above this degree may be due to

shortcomings in the error assessment of the model, induced by factors such as the neglect

of correlations between the 30' x 30' mean anomalies used in its development. Such

neglect is at present necessitated by the inability to computationally handle a more

appropriate error modeling for the 259200 mean anomalies involved in the model's

development.

(b) TOPEX represents the geopotential model that is anticipated to become available from

the analysis of the GPS tracking data alone on the TOPEX/Poseidon altimeter satellite

(Pavlis, E., et. al., 1990). Such a model will extend to degree 50 and its expected errors

were estimated in a simulation study where the GPS tracking data were used in a dynamic

solution for the estimation of the geopotential spectrum, satellite orbital parameters as well

as parameters related to air-drag etc. (ibid, 1990).

(c) GPB represents the geopotential model anticipated to become available from the

analysis of the GPS tracking data on Gravity Probe-B spacecraft. The model from such a

mission will extend to degree 55, and the expected errors of its coefficients were obtained

in the simulation study by Pavlis, E., eL al. 0bid) in a similar manner as for TOPEX.

The error anomaly degree variances for OSU89B (2 < n < 60), TOPEX and GPB

are shown in Figure 15, along with the (signal) anomaly degree variances implied by

OSU89B (2 < n < 60). As it can be seen from this fi_e, TOPEX is expected to improve

the current knowledge of the spectrum at degree 10 by about 3 orders of magnitude while

the improvement for GPB at the same degree is by about 4 orders of magnitude.

However, since TOPEX and GPB models lack the detailed terrestrial (and altimetry-

implied) gravity information included in OSU89B, their error spectra yield poorer values

than the error spectrum of OSU89B, after degrees ~ 25 and ~ 45 respectively.
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Figure 15. Anomaly Degree Variances for OSU89B and Error Anomaly Degree Variances

for OSU89B, TOPEX and GPB.

Since the information based on which TOPEX and GPB are developed is

independent of the information used to develop OSU89B, one can safely assume that if

OSU89B is combined (in a least-squares sense) with either of the two models, the

resulting solution will perform at least as good as the best of the contributing solutions

performs at any given degree. In that sense, the error spectrum of a combined solution of

the type TOPEX/OSU89B may be approximated by the error spectrum of TOPEX up to

degree 25 and the error spectrum of OSU89B from 26 to 360. Similarly, a combined

GPB/OSU89B model's error spectrum can be approximated by the error spectrum of GPB

up to degree 45 and the error spectrum of OSU89B from 46 to 360. Based on these

considerations, the total (commission plus omission) error in geopotential (_d = 0°) and

geopotential difference, implied by the above models, truncated at various degrees was

computed using equations (3.53), (3.54) and (3.55). The results are given in Table 6. In



115

all numerical results to be presented hereon the radius of the reference sphere to which the

estimated errors refer is R - 6371 km, and the model on(D) of section 3.4.1 is used to

represent the "true" spectrum of the gravity anomaly.

Table 6. Geopotential and Geopotential Difference Errors from Current and Future

Global Spherical Harmonic Models.

eAT (kgalcm)

Model Nmax _d = 0* 2D 30° 180 °

OSU89B

(89B)

TOPEX

fr)

GPB

(G)

25

45

250

25

50

207.7

154.6

60.6

206.8

161.3

242.2

213.9

77.0

242.1

217.4

294.0

217.9

85.6

Y 10o

311.0 291.6

223.0 221.7

85.1 86.2

310.5 290.2

236.4 228.0

310.3 289.8

202.1 205.6

83.0 81.2

74.7 73.9

292.7

228.5

290.7

217.1

85.9

289.4

228.9

25 206.6 242.0 292.5 289.0

50 142.5 205.5 202.1 203.0

T_9B 25/250 57.4 76.5 81.1 81.2

G_9B 45/250 52.2 74.2 73.8 73.8

As it can be seen from Table 6, the current knowledge of the geopotential spectnun

implies absolute geopotential values (Vd = 0 °) accurate to about 61 kgal cm, while for

station separation _d = 10 ° (~1110 km) the errorin AT is about 86 kga! cm, The future

models alone, (i.e. Nmax = 50), despite the great improvements they promise for the very

low-degree harmonics, fail to achieve the accuracy obtainable by the currently available

high-degree expansion OSU89B, due to the large omission error above the maximum

degree that these models can resolve. However, when the high accuracy long-wavelength

information provided by GPB, is augmented by the shorter-wavelength information

contained in the high-degree model, an improvement by about 14% over the attainable

accuracies using OSU89B alone (up to Nmax = 250), is achieved. The corresponding

improvement for the combination TOPEX/OSU89B is substantially lower (about 5%) as it

is expected (see Figure 15). Apart of the higher accuracies achievable by the combination

GPB/OSU89B, an additional factor that makes this combination preferable over the

TOPEX/OSU89B, is that the higher resolution of GPB enables better control over the
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systematic errors in the combined solution, caused by the errors in the gravity anomalies

(used in the development of OSU89B), arising from vertical datum inconsistencies. As

mentioned in section 1.1, Laskowski's (1983) study indicated that such errors are likely to

contaminate the geopotential's spectrum up to maximum degree about 60.

4.2 Introduction of Terrestrial Gravity Disturbance Measurements

The estimation scheme of the previous section, whereby the geopotential

differences were obtained on the basis of the global information contained in a geopotential

model only, is now augmented by introducing detailed local gravimetric information in the

form of gravity disturbances inside the caps surrounding the computation points. The

characteristics and sensitivities of this estimation scheme are considerably more

complicated to assess, than of the scheme of section 4.1, because here a number of inter-

related factors affect the quality of the final result. Hence, to examine the individual

contribution and importance of different aspects of the observation/estimation setup to the

quality of the results, the following discussion is divided into three parts, addressing the

choice of cap integration kernel, the cap size and data density, and the data accuracy

respectively. In addition, since the error estimation of the observational setup considered

here, can be performed using either truncation theory principles or least-squares

collocation, a comparison of the error estimates obtained by each technique is also given in

section 4.2.4.

4.2.1 The Choice of Cap Integration Kernel

The two integration kernels HI(V) (unmodified Hotine) and H2(V) (Meissrs

modification) are examined here. The propagated errors in geopotential (Vd = 0°) and

geopotential difference implied by the use of these kernels are given on Table 7, for two

cap sizes (vT = 2 o, 4 o) and two choices of reference geopotential model (OSU89B and the

combination GPB to degree 45 augmented by OSU89B from 46 to 250).
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GeopotentialandGeopotential Difference Errors Implied by Different Choices of

Cap Integration Kernel. (All Errors are in kgal cm).

2°

4°

Yd

O' 19.4

5O 24.4

10° 27.2

30 ° 27.5

18.6

5° 23.5

10° 24.8

30° 26.3

OSU89B GPB/OSU89B

HI(V) I-I2Cv)
19.8 16.7

24.3 22.6

28.5 23.4

28.0 23.6

14.0 16.3

15.5 19.9

19.2

19.8

HI(_) H2(_)

8.7

12.6

12.1

12.3

10.0

12.7

21.8 13.6

23.1 14.1

VoT : terrestrial cap size

Vd : angular separation between stations

AvT= 4'

Gravity Disturbance Error : o(3_V ) ; mo = 2 mgal, ¥c = 0 o.1

Nmax = 250

In the evaluation of the errors given in Table 7 (as well as in all subsequent

applications of truncation theory) the sampling error spectrum Sn, which was introduced

but not specified in equation (3.5 la), was evaluated from the quartic expression developed

by C. Jekeli based on numerical experiments performed by Colombo (1981a, equation

3.10), i.e.

where:

(4.1)

t_-_) - _ {[- 16.19570(-_) + 30.34506] {--_) + 40.29588 _--_ (4.2)

and N is the Nyquist frequency implied by the sampling interval (equation 3.21), while dn

is the signal degree variance of the gravity disturbance.

Examining now the results shown in Table 7, the following comments can be made:
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1. By comparing the results for the case of OSU89B and the two different cap sizes it can

be seen that the kernel modification yields improved accuracy estimates by about 25% for

the larger cap size (4°), but degrades slightly the results for the smaller cap size. In

contrast, in the case of the combined model GPB/OSU89B, the kernel modification yields

a substantial (~ 48%) reduction of the error for the smaller cap size and a less pronounced

(~ 39%) for the larger one. This is due to the fact that Meissl's modification, in its attempt

to accelerate the rate of convergence of the truncation coefficients, shifts part of the power

of the higher-degree coefficients to the lower-degree ones (see also (Jekeli, 1980).

Accordingly although the omission error decreases with the introduction of Meissrs

modification, the commission error increases, and that explains the slight degradation of

the results when OSU89B is used as reference model. In case the combined model is

used, the lower-degree harmonics of this model are so accurately determined from GPB,

that the increase of the commission error is overwhelmed by the concurrent decrease of the

omission one, and that accounts for the great improvement achieved by the use of H2(V)

instead of Hi(V) here.

The increase of the cap size to 4 ° implies that additional information concerning the

long-wavelengths is contributed by the cap measurements, as compared to the case

_T = 2 o. This counterbalances the increased commission error in the case of OSU89B

(going from HI(_/) to H2(_/)), but, since the cap measurements are not error-free, reduces

the 48% improvement in the case of the combined model, to 39% (increased cap size

implies increased propagated error).

2. A comparison of the results for the case (¥To = 2 °, H2(_), GPB/OSU89B) in Table 7,

with the results given in Table 6 for GPB/OSU89B (Nmax = 250), shows the substantial

improvement achieved by the incorporation of terrestrial gravity disturbances around the

computation points. Such comparison implies that the present accuracies of the higher-

degree harmonics, as well as the resolution that current high-degree expansions achieve,

are only capable of geopotential difference determination at the accuracy level of about 75

kgal cm. If one strives for a 10 kgal cm accuracy level, then, not only terrestrial

gravimetry, but the high-accuracy long-wavelength geopotential determination anticipated

from the GP-B mission are needed. As it can be seen from Table 7, the present

knowledge of the long-wavelength (2 to 45) part of the geopotential spectrum, can only

support geopotential difference determination at the 20 to 30 kgal cm level for the cap sizes

that were considered.
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The dependence of the accuracy of the estimated geopotential differences on the

extent (cap size) and density of the gravity disturbance measurements in the caps

surrounding the computation points is very important, since precise gravimetric surveys

required to gather the data are rather costly undertakings. In order to examine these

aspects, the error of the estimated geopotential (_d = 0°) and geopotential difference was

evaluated for three cap sizes (VoT = 1°, 2 ° and 4 °) and three grid spacings (A_tT = 2', 6' and

10'), with the combined GPB/OSU89B model to Nmax = 250 used in all cases as the

reference and with H2(V) as the cap integration kernel. In all cases a reciprocal distance

error covariance model with variance 4 mgal 2 and correlation length 0 °.1 was used. The

results are given in Table 8.

Table 8. Influence of Data Extent (Cap Size) and Data Density on the Error of Estimated

Geopotential and Geopotential Difference. (All Errors are in kgal cm).

1o

2'

4'

AvT
m ,,,

2' 6' 10'

0_

Y

10o

3Oo
0_

Y

10°

3Oo

0_

5o

10°

300

15.9

23.8

22.5

22.5

8.7

12.6

12.0

12.3

10.0

12.7

13.6

14.1

16.0

23.9

22.6

22.6

8.8

12.8

12.2

12.5
10.1

12.9

13.8

14.3

16.4

24.4

23.2

23.2
9.5

13.7

13.2

13.5

10.7

13.8

14.7

15.1

V_: terrestrial cap size

Vd : angular separation between stations

Geopotential Model : GPB/OSU89B (45/250)

Integration Kernel : H2(V)

Gravity Disturbance Error : o(3_V ) ; mo = 2 mgal, V c = 0 °. 1
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As it canbeseenfrom Table 8 the grid spacing (A_ T) has only a minor effect on the

quality of the result. As one passes from the very dense sampling (A_ T = 2'), to the

coarser one (A_t T = 10'), a degradation of the results by only about 1 kgal cm is observed.

This is due to the fact that the sampling error, for sampling intervals smaller than ~ 10',

has the smallest contribution to the total error of the geopotential and the geopotential

difference. For the cap sizes under consideration (up to ~ 5 °) and the reference high-

degree spherical harmonic models used here, the two major sources of error contributing

to the total error budget are the propagated error of the cap data and the commission error

of the model. The little dependence of the total error on the sampling interval (for A_ T <

10'), is rather fortunate because it implies cost savings in the data acquisition process.

As far as the cap size is concerned, as it can be seen from Table 8, _Xo -- 2 ° yields

the best results for the particular selection of reference gravity model (and its higher

degree) and error properties of the data. It is important to notice that due to the

accumulation of propagated error of the data, the increase of the cap size beyond a certain

value does not improve but degrades the results. Although this appears strange at first

glance (introduction of additional information should not worsen the determination of T

and AT), it is well explained if one takes into account that the kernel H2(V), used to

evaluate the errors in Table 8, is designed based on deterministic principles with no

explicit requirement to minimize the total error of the geopotential. This aspect will be

reconsidered in section 4.2.4, since it constitutes a major difference between integral

formulae techniques using deterministic kernels and least-squares collocation.

4.2.3 The Effect of the Error Properties of the Gravity Disturbance Data

In view of the difficulties encountered in estimating realistic error properties for the

gravity disturbance data inside the caps, it is important to examine the effect of various

assumptions concerning the behavior of the data errors, on the errors of the estimated

quantities (T and AT). For this purpose, the two error covariance models

_---2(_) and _-3(V) were used, with different variances (rn_ = 1, 4 mgals 2) and correlation

lengths (_1_ = 0O.1, 0°.5) for the estimation of eT(Vd = 0 °) and e.AT. The results are given

in Table 9. In all cases, the cap size was 2 °, the sampling interval was 4', the geopotential

model GPB/OSU89B to Nm_ -- 250 was used as reference model and H2(V) was used as

integration kernel. Examining the results in Table 9, the following comments earl be

made:
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Influence of the Error Properties of the Gravity Disturbance Data on the Error of

Estimated Geopotential and Geopotential Difference. (All Errors are in kgal cm).

Yd

0'

5o

10o

3O°

0'

5'

10o

30 °

5.9

9.2

8.2

8.3

6.4

9.8

8.9

9.1

1 mgal

8.3

12.4

11.7

11.8

8.6

12.3

11.8

12.1

mo=2

7.1

10.8

9.9

10.1

8.7

12.6

12.1

12.3

13.8

19.9

19.4

19.5

14.4

19.5

19.8

20.3

ERROR

MODEL

_oT =2 ° ; AvT=4 '

Geopotential Model : GPB/OSU89B (45/250)

Integration Kernel : H2(V)

1. In all cases considered the Gauss-Markov model _(2){W) yields more optimistic results

than the reciprocal distance model _(3_}. Observing Figure 14a, one can see that the

first-order Gauss-Markov model contains more power of the error below harmonic degree

~ 150, than the reciprocal distance error model does, for the same degree range. Since the

cap data error contribution at the lower degrees is greatly attenuated, due to the very small

magnitude of the coefficients XQ_ (see equation (3.50b)) at these degrees, for a given

variance n_, the Gauss-Markov model _(2_) implies a smaller propagated error, than

the reciprocal distance does. In addition, the difference of the errors implied by the two

models becomes smaller as the correlation length increases, because the increase of Wc

shifts more power of the error _3) at lower degrees as it can be seen from Figure 14b.

For example, for ti_ - 1 mgal2 and _tFc = 00.1, _(3_) yields an error ~ 8% larger than

_(2_W), while the difference is only ~ 3% for V e = 0°.5 (for the same error variance).

2. The error of T and AT is affected more by changes of the error correlation length, than

by changes of the error variance. For example, for rr_ = 4 mgal 2, the error nearly doubles

as the correlation length increases from 0 °.1 to 00.5, while for We = 00.1, increasing the
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variance from 1 to 4 mgal 2 causes only an increase of the error of approximately 26%.

Note also that for the larger variance, an increase of the correlation length causes a quite

larger increase of ET and eAT, than for the smaller variance.

According tO the above, larger but less correlated errors in the cap measurements

can be tolerated more than smaller but heavily correlated ones (e.g., systematic errors in

the cap data), as far as the determination of the geopotential differences is concerned.

4.2.4 Comparison Between Error Estimates from Truncation Theory and

from Least-Squares Collocation

The two different techniques for assessing the global rms error of the geopotential

differences, obtained on the basis of a global spherical harmonic model and gravity

disturbance data in the terrestrial caps, are intercompared in this section. For this purpose,

the parameters given in Table 10 were used in the implementation of truncation theory, and

the error eAT was evaluated with both techniques, for two cap sizes (VTo= 2 °, 4°), using

the two different error covariance models, for three station separations (Vd = 5°, 10 °, 300) •

Table 10. Comparison Between Error Estimates of Geopotential Differences Obtained

from Truncation Theory and Least-Squares Collocation (All Errors are in

kgal cm).

VO

5o 10.8

10° 9.9

30° 10.1

_To = 2 ° VT = 4 °

TRUNCATION LS C TRUNCATION

42) _(3) _(2) 43)

12.6 8.7

12.1 8.4

12.3 8.5

11.4

11.4

11.7

42) 43)

8.1 12.7

8.1 13.6

8.1 14.1

LSC

42) 43)

7.3 10.9

7.2 10.9

7.3 11.2

AV T =4'

Gravity Disturbance Error : mo = 2 mgal, V c = _ 1

Geopotential Model : GPB/OSU89B (45/250)

Integration Kernel : H2(V)

Examining the results given in Table 10, the following observations can be made:
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1. Theuseof least-squarescollocation(with ring averages) _ yields smaller error

EAT than the use of the integral formula. This is as expected, since lsc is by definition the

optimal linear estimator, in the sense that it minimizes the rms error of the estimates,

among all the other linear estimators, one of which is the integral of Hotine.

2. Increase of the cap size can never cause increase of EAT in the case of lsc, no matter

what the error properties of the data are. This is not the case when the integral formula is

used, as it was also seen in section 4.2.2, due to the accumulation of propagated error

caused by the increase of the number of measurements.

3. The reciprocal distance error covariance model yields more pessimistic results than the

Gauss-Markov model in the case of lsc, as it was also the case when the truncation theory

was used to estimate the error eAT.

4. The error estimates from the two techniques are generally in good agreement, the

largest difference being on the order of 3 kgal cm (~ 21%).

Finally, summarizing the results of the previous sections, the error analysis

performed here indicates that with the combination GPB/OSU89B model, used to

Nmax = 250, and with gravity disturbance data on a 2 ° cap, accurate to 2 mgals,

geopotential differences accurate to - 12 kgal cm are achievable for stations separated by

30 ° (about 3300 km). If the error of the cap data reduces to 1 mgal, the corresponding

eAT becomes about 8.5 kgal cm, which is a comparable figure with the current accuracies

of geocentric positions estimated using satellite techniques.

4.3 Introduction of Gravity Disturbance Data at Altitude

The GPS/GPB SST configuration is considered here, as the observational system

that provides the gravity disturbance data at altitude. The long-wavelength reference

geopotential model used in the least-squares collocation (with ring averages) error analysis

that is presented next, is assumed to be the product of a global dynamic solution, based on

smoothed values of the SST data, as was discussed in section 2.4. The maximum degree

of this model is taken initially equal to 20 for two reasons. First, to avoid the systematic

errors on the gravity disturbance at altitude, arising from the residual centrifugal

acceleration term _Rio as explained in section 2.4 (see Table 3), and second, to permit a

higher signal-to-noise ratio for the data at altitude, as opposed to higher degrees of
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truncation. Two different caps sizes (_so = 5 °, 10 °) were considered for the data at altitude,

and for each case two different ring spacings were used (A_ s = 30', 60'). Data density of

one observation per square degree at altitude, implies an integration interval of about 13

seconds, for the polar 10-day repeat orbit of GPB, based on an approximate formula given

by Jekeli and Rapp (1980). Considering also terrestrial gravity disturbance data in caps of

semi-aperature 2 ° and ring spacing 6', the error estimates eAT for station separation

_d = 30° were computed, using also different assumptions for the error properties of the

data at altitude (rn_ = 0.4, 0.2 mgal). The results are given in Table 11.

Table 11. Geopotential Difference Errors Implied by the Combination of Gravity

Disturbance Data on the Earth and at Altitude. (All Errors are in kgal cm).

o(2Xv ) (v c =00.1) o(3Xv ) (v c =00,1)

_o rn_ = 0.4 mgal 0.2 mgal 0.4 mgal 0.2 mgal

Y 16.1 13.5 21.2 15.8

17.6 14.4 21.9 16.2

10_

AWs

30'

60'

30'

60'

15.7

17.2 (15.0)

12.9

13.9 (13.2)

20.2

20.8 (15.7)

15.4

15.8 (14.0)

Vso : cap size at altitude

angular separation between stations Vd = 30 °, hGp-B = 600 km

TerrestrialCaps: VTo = 2 °, AV r = 6'

Terrestrial Gravity Disturbance Error: -_(3_{_), mo= 2 regal, _ = 00.1

Reference Geopotential Model : GPB to Nmax = 20 (Parenthetical Values Computed with

Nmax = 45).

As it can be seen from Table 11, the reciprocal distance error covariance model

"o(3XV ) yields again the most pessimistic results. This can be attributed to the fact that the

downward continuation process involving the data at altitude, amplifies the error power in

the degree range 150-750, in which range the reciprocal distance error model has more

power concentrated than the first-order Gauss-Markov model (see Figure 14a). Although

the downward continuation amplifies the error power throughout the band, the lower-

degree part is dora/hated in the above estimation scheme by the reference model, while the

very high part of the error spectrum has small effect on the estimated geopotential

differences.
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Overall, the error estimates given in Table 11 are of comparative magnitude with

those obtained in the absence of the data at altitude. In order to enable a more systematic

comparison between the two cases, in Table 12 the error estimates eAT obtained on the

basis of terrestrial data only, and various reference geopotential models, are summarized.

These were computed using least-squares collocation with ring averages to enable a fair

comparison with the estimates of Table 11. Comparing now the error eAT from Table 11

for the case Nmax - 45, _(3_), mo= 0.4 regal, _o = 10 °, A_ s = 60' (15.7 kgal cm), to

the corresponding 16.9 kgal cm from Table 12, one can see that an improvement of about

7% is achievable by the introduction of the data at altitude. Although small, such an

improvement indicates two things:

(a) The error properties assigned to the data at altitude according to the reciprocal distance

error covariance model with variance 0.4 mgal and correlation length 0°.1, appear to

provide a realistic assessment of the quality of them. A larger improvement would imply

that the error properties assigned to these data are too optimistic and in disagreement with

the error budget based on which the error estimates of the global geopotential solution

GPB were derived.

Table 12. Geopotential Difference Error eAT Implied by Current and Future Reference

Models and Terrestrial Gravity Disturbance Data in a 2 ° Cap.

Model

OSU89B

TOPEX/

OSU89B

(25/250)
GPB/

OSU89B

(45/250)

Wd Nmax = 25
5' 46.7

10° 48.9

30' 47.4

Y 45.8

10° 46.8

30o 45.0
5' 45.6

10° 46.5

30° 44.8

eAT (kgal cm)

Nmax = 45

22.7

26.7

26.5

20.1

20.5

20.3

16.9

16.7

16.9

Nmax = 250
18.8

23.2

23.3

16.0

16.9

16.5
11.4

11.4

11.7

NtoT - 2°,A_ T = 6'

GravityDisturbanceError: _(3_), mo= 2 mgal, Xltc= 0°.1
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(b) The introduction of the data at altitude provide a better configuration for the estimation

of the geopotential differences, as compared to the use of terrestrial measurements only.

Using pessimistic error estimates as a guideline, one can conclude that

measurements from the Gravity Probe B mission (in combination with terrestrial gravity

disturbance data in 2 ° caps) are capable of providing geopotential differences over

intercontinental distances, accurate to about 15 to 17 kgal cm. This estimate is an order of

magnitude better than what can be achieved using the traditional vertical connections based

on MSL monitoring (about 150 kgal cm). However, lacking gravitational information in

the medium frequency band (45 < n < 250), the results from GPB are about 5 kgal cm

worse that those obtained when GPB is augmented by OSU89B in this spectral band (eAT

12 kgal cm). It should be mentioned though that such augmentation does not guarantee

that the estimated geopotential differences are totally free of systematic errors arising from

vertical datum inconsistencies, since the harmonics of OSU89B above degree 45 may be

contaminated by such errors. To enrich the satellite observations with medium frequency

gravitational signal, requires either a lower flying altitude, or additional on-board

instrumentation capable of measuring higher-order gradients of the gravitational potential,

and in this direction the ARISTOTELES mission may provide a significant contribution.

Finally, it should be emphasized here that the error estimates evaluated for the

geopotenfial differences in this chapter, account for errors of the reference geopotential

model and the gravity disturbance data only. Additional error contribution to the

geopotential difference will arise due to random errors of the geocentric positions of the

stations and due to a systematic offset of the origin of the coordinate system from the

geocenter, as discussed by Colombo (1980) and Hajela (1983). Random position errors

at the + 5 cm level (Smith et al., 1985) have small effect on the estimated geopotential

differences, while the systematic error due to non-geocentricity of the reference frame can

have significant effect on the intercontinental connections.





CHAPTERV

SUMMARY,CONCLUSIONSAND RECOMMENDATIONS

Theproblem of estimation of geopotential differences over intercontinental locations

was re-examined, in order to assess currently achievable accuracies and future anticipated

improvements. Accurate estimation of the geopotential differences between points located

at different continents, imply the unification of the vertical datums established in them,

which at present are defined based on MSL monitoring and thus are (in general)

inconsistent due to the presence of the Quasi-stationary Sea Surface Topography.

A review of the proposed techniques for the unification of vertical datums, in

conjunction with anticipated future satellite missions and in view of the accuracies

achievable at present for geocentric positioning, indicated that approaches based on the

combination of gravitational information with high accuracy geocentric positioning, are

favored at present and in the near future for practical implementation. In this direction,

extending the ideas put forward by Colombo (1980), an observational setup was

proposed, whereby gravity disturbance measurements on the Earth's surface, in caps

surrounding the estimation points, are combined with corresponding data in caps directly

over these points at the altitude of a low orbiting satellite, for the estimation of the

geopotential difference between the terrestrial stations. The gravity disturbance data at

altitude are inferred from GPS measurements made from the low orbiter to the high-

altitude GPS satellites, in a multiple-high-single-low Satellite-to-Satellite Tracking

configuration. In the absence of actual measurements, the performance of such an

observation/estimation scheme was evaluated by conducting an error analysis study.

The mathematical modeling required to relate the primary observables to the

parameters to be estimated, was studied both for the terrestrial data and the data at altitude.

Emphasis was placed on the examination of systematic effects and the corresponding

reductions that need to be applied to the measurements to avoid systematic errors. For the

gravitational accelerations inferred from SST data, it was discovered that the magnitude of

127
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a centrifugal acceleration term (SRio) was underestimated by several orders of magnitude

in the past as a result of an erroneous derivation. The previous formulation implied a

magnitude of 8Rio about 7 x 105 times smaller than the current corrected formulation. It

was shown in this study that in order to keep the systematic effect arising from _Rio at the

20 i.tgal level, a reference geopotential model complete to degree 20 is required (high-low

SST configuration). Previous analyses, based on the erroneous formulation, were

indicating that a reference model complete to degree 4 is adequate to keep the residual

systematic effect of 8Rio at the 10 I,tgal level. For a given noise level (0.4 mgal) of the

data at altitude, increase of the maximum degree of the reference model, significantly

affects the ratio of the residual signal to the noise.

Two different techniques were considered for the estimation of the global mean

square error of the geopotential differences. Error propagation using truncation theory, as

applied to Hotine's integral formula, and the least-squares collocation using ring averages

as input data. Both techniques are applicable in case observations on the Earth's surface

only are involved in the geopotential difference estimation, but only lsc can handle

efficiently the over-determined case when observations at altitude are added. Alternative

formulations related to the sampling (or discretion) and the propagated errors arising in the

truncation theory considerations were derived. These are characterized by the same

computational requirements as the previous formulation by Christodoulidis (1976), while

they provide a more consistent interpretation of the underlying physical principles that give

rise to these errors. In an attempt to apply truncation theory principles for the assessment

of the contribution of gravitational acceleration data at altitude, to the estimation of

geopotential differences on the Earth's surface, recurrence relations for the altitude

generalized truncation coefficients implied by Hotine's kernel were developed for the f'trst

time.

Both techniques (truncation theory and lsc) require for their implementation a-priori

knowledge of the global properties of the signals and the noise involved in the estimation

and to this end different covariance models were considered and their spectral

characteristics were compared. In addition, an efficient recurrence relation for the degree

variances implied by a first-order Gauss-Markov covariance model was developed for the

f'trst time in this study.
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For thenumericalanalysis, three global geopotential solutions were considered as

reference models. The currently available OSU89B high-degree harmonic expansion, and

the global models anticipated to become available from GPS tracking data of the

TOPEX/Poseidon and the Gravity Probe B spacecrafts respectively. Augmentations of the

latter two models with higher-degree harmonics from OSU89B were also considered. A

number of numerical experiments were performed that lead to the following conclusions:

(a) The currently available global geopotential model OSU89B alone is expected to yield

geopotential differences between stations separated by 30 °, accurate to about 86 kgal cm.

The future models (augmented by OSU89B) can improve this accuracy to about

81 kgal cm (TOPEX/OSU89B) and 74 kgal cm (GPB/OSU89B) respectively.

(b) Introduction of gravity disturbance measurements in terrestrial 2 ° caps

reduces the previous error estimates to the following: 23 kgal cm (OSU89B), 17 kgal cm

(TOPEX/OSU89B) and 12 kgal cm (GPB/OSU89B), when pessimistic error estimates are

used for the gravity disturbance measurements (m0 - 2 mgal). With m0 = 1 mgal the case

GPB/OSU89B yields an error of about 9 kgal cm for 30 ° station separation. The error

estimates for these cases were computed using both truncation theory and lse (ring

averages) and the results from the two techniques were compared. It was found that the

lsc error estimates are always smaller than the ones obtained from truncation theory, as

mandated from theory. The largest difference between the two error estimates was found

to be about 21%.

(c) When gravity disturbance data at the altitude of GP-B (about 600 km) were

introduced, a moderate (7%) improvement in accuracy, over the corresponding ease

without such data, was found. In both cases, the reference geopotential model used was

complete to degree 45, obtained from the analysis of the GPS tracking data on GP-B.

However, gravity disturbance data at this altitude are unable to resolve medium and high

frequency variations of the gravity field and thus the result in this case is inferior by about

5 kgal cm to the result obtained from the combined GPB/OSU89B high-degree model

(complete to degree 250).

To enrich the data at altitude with more high-frequency information, it is

recommended here that additional measurements of a higher-order gradient of the
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disturbingpotentialmadefrom alowerflying spacecraft,beincorporatedin theestimation.
In this direction, the gradiometerdata from ARISTOTELES mission can provide a

significant contribution. In addition, it shouldbeemphasizedthat the error estimates

reportedherecorrespondto a "worst-case"scenariowhereonly onepairof benchmarksis
consideredfor theintercontinentalconnection.Additional benchmarksoneachcontinent,

connectedwith leveling lines,canprovidea betternetworkconfigurationand yield an

improvementon theaccuracyof theintercontinentalconnectionsup to 25%,asthestudy

byHajela(1983)hasindicated.

Finally, theresultsreportedherearepromisingenoughto warrantanactualtesting

of thetechnique.For thispurpose,stationswhosegeocentriccoordinatesareaccurately

known(e.g.SLRsitesor VLBI stationsconnectedto a geocentricsystemusingGPS)and

betweenwhichthegeopotentialdifferencehasbeenestimatedindependentlyusingspirit

levelingandgravimetrycanbeusedastestsites. At present(1991),collectionof gravity
disturbancemeasurements(using relative GPSpositioning and gravimetry) in caps

surroundingthesetestsites,will enabletestingof theproceduredescribedin section4.2.
As it wasdiscussedin that section,a cap sizeof 2° and an approximatespacingof 6'

betweenthepointswherethegravitydisturbancesaredetermined,areoptimumparameters

for the observationalsetup,provided a state-of-the-arthigh-degreeglobal geopotential

model (e.g.OSU89B) is usedasreference. In theactualimplementation,least-squares
collocation using the original gravity disturbancedata (asopposedto ring-averages)

shouldbeusedto maintainhighestcomputationalrigor. In addition,detailedelevation
informationaroundthetestsitesshouldbeusedfor theconsiderationof theterraineffects

by meansof analyticalcontinuation,asit wasdiscussedin section2.3.

In amorefuturetimeframe(1995),theavailabilityof thedatafrom theanticipated

satellitemissions(TOPEX/Poseidon,Gravity Probe-B,ARISTOTELES),will enableto

improvetheaboveschemein two ways. First, by theuseof global geopotentialmodels
with moreaccuratelyestimatedlower-degreeharmonicsthanthoseof OSU89B,assuch

modelswill becomeavailablefrom theanalysisof theglobalsetsof observationscollected

by thesemissions,andsecondby theuseof gravitationalinformation in capsat altitude
(GP-B,ARISTOTELES),asdiscussedin section4.3.



APPENDIX A

RECURRENCERELATIONSFOR THE TRUNCATION COEFFICIENTS IMPLIED

BY PIZZETH'S EXTENSION OF HOTINE'S KERNEL

The development of recurrence relations for the coefficients Qn(R]r, Vo), defined by:

Qn(R/r, _1/o)= R/r , _t)Pn(cOsv) sinxl/d _ ; r > R (A.1)

is based on recurrence relations of the Legendre polynomials. Denoting Pn(t) (or simply

Pn) the n th - degree Legendre polynomial, and P_(t) (or simply Pn) its first derivative

with respect to the argument t, the following relations hold true (Hobson, 1965, Ch. II,

Sect. 20):

nPn = - (n-1)Pn-2 + (2n-1)tPn.t (A.2)

(2n + 1)Pn = Pn'+l - Pn-1 (A.3)

(1 - t2)Pfi = n0an.1 - tPn) (A.4)

Pn(- 1)= (- 1) n (A.5)

The following notation is introduced:

k R 0<k<l (A.6)
r

t = cosy ; -1 < t < 1 (A.7)

D 2 = 1 - 2kt + k 2 (A.8)

Accordingly, Pizzetti's extension of Hotine's kernel takes the closed form:

H(k,t) = _D - ln(D _kt- t ) ;t#l (A.9)
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and the series expansion form:

H(k't) = n_0 n+2_1 kn + 1Pn(t)=
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(A.10)

With the change of integration variable from V, to t = cosy, and the substitution

x = cOSVo, equation (A.1) becomes:

Qn(k,x) = fl H(k,t)Pn(t)dt
(A.11)

or, due to (A.9):

Qn(k,x) = 2kfi_dt - fl Ir_D _kt- t) Pn(t) dt
(A.12)

It will be understood in all subsequent derivations that _So _ 0 so that x # 1. The case

_o = 0 will be considered separately at the end.

For the purposes of the subsequent derivations, a number of auxiliary quantities

are defined next:

In(x) = fl Pn(0dt

Kn(k,x ) = D3

(a)

(b)

(c)

(d)

(A.13)
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To develop recurrence relations for Qn(k, x), one starts with recurrence relations for

some of the auxiliary quantities defined before.

From (A.2) one has:

1
Pn(x) =n [(2n - 1) xPn-l(X) - (n-1)Pn-2(x)]

which, with starting values:

; n _ 2 (A. 14a)

establishes a recurrence relation for the Legendre polynomials.

From (A.3) and (A.5) one has:

1
In(x) - 2n + 1 [Pn + 1 (x) - Pn -l(X)] ; n > 1

and:

(A.15)

Although equation (A. 15), along with the recurrence (A. 14a,b), are sufficient to evaluate

In(x), an independent recurrence for In(x) may be developed as follows. Equation (A. 15)

is written as:

- (n- 2)In. 2(x) =- 2n'-_3 n- l(X) + 2n'-_. 3Pn- 3(x)

In addition, from (A.15) one has:

(2n - 1)XIn. l(x) = xPnCx) - XPn-2(x)

Now, from equation (A.2) one may write:

xpn(x)= +l(x)+

- xPn- 2(X) =- 2n'-__3Pn - I(X)- 2n-d__3Pn -3(x)

(A.16)

(A.17)

(A. 18a)

(A.18b)

Po(x) = 1 ; Pl(x) = x (A.14b)
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Addingby parts(A.16), (A.18a)and(A.18b),andtakinginto account(A.17),onehas:

(2n - 1)xln. l(X)- (n- 2)In_ 2(x) = n + 1 [Pn + l(x)- Pn-l(x)]
2n+ 1

which, due to (A.15), finally establishes the following recurrence for In(x):

In(x) =--_, [(2n - 1)XIn.1 (x) - (n - 2)In_2 (x)] ; n>2
n+l

(A. 19a)

with starting values:

Io(x)-- 1 + x ; Ii(x) =l(x2- 1) (A.19b)

For L_(k, x), due to (A.3), one has:

L_(k, x) = 1 dt- d

1

so, due to (A. 13d):

L'n(k, x) = 2n-_+ 1 Mn + l(k, x) - Mn -l(k, X)] (A.20)

With dv = Pn(t)dt (v = Pn(t)), and w = D -1 (dw = kD-3dt), integration by parts yields for

Mn(k, x):

Mn(k,x) Pn(x) (- 1)n
= Dx - (1 + k) kKn(k, x) (A.21)

where:

Dx = (1 - 2kx + k2) _/2 (A.22)

Equations (A.20), (A.21) and (A.15), yield for Ln(k, x):

I_(k,x)= -k [ '2n+l Kn + l(k, X)- Kn_ l(k, X)] + In(x)
D---_ ; n _>1 (A.23)



ConsiderKn(k, x) next. Thedefinition(A.13c)andequation(A.2) imply:
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x

, , tPn(t)
(n + I)K n + 1 + nKn- l = (2n + 1) dt

-1 I)3

However, it can be easily verified that:

(A.24)

_L=l+k2[ I 1 ]
D 3 2k [D3 D(I + k2) (A.25)

Due to (A.25), the right-hand side of (A.24), becomes:

1 +k 2 "
_t = (2n + I)-L_Kn -(2n + 1) D 3

-1 -1

so that, taking also into account the definition of L_(k, x), equation (A.24) becomes:

2 (n + 1)K n + 1 + nKn- 1 = (2n + 1 (1 + k2)K'n - (A.26)

Eliminating L_ from equations (A.23) and (A.26), one obtains:

kK_ + x(k,x)- (I + k2)Kn(k, x) + kK n 1(k,x) =-In(x.___)
" Dx

In addition, direct integration yields:

; n > 1 (A.27)

dt=l__ (a)
D3 kD

tdt = _ 1 - kt + k 2)
1)3 k2D"

(b)

(A.28)

Hence, a recurrence relation for Kn(k, x) may be established as follows:

Kn(k, x ) l+k2K"= k --n I(k'x)'K_-2(k'x) In-l(X)
- kD x

; n>2 (A.29a)



with startingvalues:

Ko(k, x) = _
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; Kl(k, x) = 1 - kt + k 2 (A.29b)

One may now express Kn+l(k, x) in terms of Kn(k, x) and Kn-l(k, x) from equation

(A.29a), and then substitute this expression in equation (A.23), so that finally the

following recurrence relation is established for l._(k, x):

Ln(k, x) = 1 2kKn_l(k ' x) - (1 + k2)K_(k, x) + 2(n + 1 ; n >_2
2n+ 1

(A.30a)

with starting values:

• xLo(k, x) = -
-1

• +k2) x; Ll(k, x) = - ..D_. (1 + kt (A.30b)
3k2 -1

which were obtained by direct integration applied to the definition of l__(k, x) given in

(A.13b). Notice that the recurrence (A.30a) may actually start from n = 1, however, it is

computationally convenient to start it from n = 2, the same degree from which the Pn(x),

In(x), Kn(x) recurrence relations start.

With the previous derivations as a background, one proceeds now with the

development of recurrence relations for Qn(k, x), as follows. From equations (A. 12) and

(A. 13b) one has:

Define:

(A.31)

so that the previous equation becomes:

Qn(k, x) =2kI_(k, x) + R_(k, x) n_O (A.32)



Due to equation (A.2), equation (A.31) becomes:

• IiI 'tlgn =- n_:J_gn 2n_:_L- In D - t tP._l(t)dtn -2 n

which due to (A.4) becomes:

IiRn = Rn_2 + 2n-1 (1- t 2) Pn-l(t) In t
n(n- 1)
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(A.33)

The integral on the right-hand side of (A.33) may be evaluated using integration by parts.

Let:

and:

dv = Pn-1 (t)dt :=) v = Pn-l(t) (A.34)

w = (1-t2)ln (D +l_kt- t)

It is a matter of algebraic manipulations, to show that:

dw = [-2tln(D _-kt-t} +ktD .1D + 1]dt

(A.35a)

(A.35b)

Hence, integration by parts in equation (A.33) yields:

Rn=Rn_2+ 2n-1 (1-x2)l D_ x tad(x)
n(n- 1)

where:

F

2(2n- 1) • . 2n- 1 An_l. 2n- 1
-I n-_--l)" Bn-I n(n 1) n(n 1)

A_ = flXkt_ 1 Pn(t)dt

.I_1 D

In-l(X)
(A.36)

(A.37)

and:

B_= D -t tPntt)dt

1 (A.38)



For Bn,due to equation (A.2) and the definition (A.31) one has:
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• 1,• ____Lr_.2n_n- P_Bn'l= 2n-1 - "- (A.39)

For An, due to the definition (A.13b) one has:

klXDI L.
t •

An. 1= Pn-l(t)dt- 4'
1

which due to equation (A.2) becomes:

t• Pn-2 (t) "

An_1= dt + 11-I 1 "_ d -Ln_12n- 1)_1 -

which finally becomes:

. 2n-1' = [n---_-I nLLn-2] n(n-1) Ln-1n(n-1) An-1 -k I._+ + 2n-1 " (A,40)

Substituting (A.39) and (A.40) ifi equation (A.36), one obtains the following recurrence

relation for Rn(k, x):

Rn(k, x) = 1 {(n- 2)(n-1)R n 2(k, x)+ (2n- 1)(1- x2)ln( D_+k- x)Pn-l(x)
n(n + 1) - 1 - x

[, , ]-k nL n (k, x) + (n - 1)Ln_ 2 (k, x)

[ ]1+ (2n - 1) Ln. 1(k, x) - In-1 (x) ; n ->2 (A.41)

which requires starting values for R_(k, x) and R/(k, x). These may be obtained by

direct integration applied to equation (A.31) that defines Rn(k, x). Let:

f
ro(k,t):- ln(D_kt t) dt



t

rl(k, t)= -ftln(D+k-t) dtl-t
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It can be shown that:

ro(k, t)=2_k[D 21n(D-_.t- ) - (l+k) 21n(D+k+ 1)+ (l-k) 21n(D-k+ 1)+2kD]

• alp +
rl(k,t)=2-_k{k[ln(D+k+l)-ln(D-k+l)]-2[3-D 2 (1-k2)D]

- kt214D _'kt- t} }

(A.42a)

(A.42b)

so that the starting values R_(k, x) and Ri(k, x) are given by:

• , IxRo(k, x) = ro(k, t) -1

• , IxRl(k, x) = rl(k, t) -1 (A,43)

The recurrence relation for Rn(k, x) was the last relation required to establish a

recursive algorithm for the computation of the truncation coefficients Qn(k, x). In

summary, for _o _ 0 (x = cosvo _ 1), the recursive evaluation of Qn(k, x) is

accomplished by computing the following quantities:

.

2.

3.

4.

5.

6.

Pn(x) from equations (A. 14a, b)

In(x) from equations (A. 19a, b)

Kn(k, x) from equations (A.29a, b)

Lr_(k, x) from equations (A.30a, b)

Rn(k, x) from equations (A.41) through (A.43)

Finally Qn(k, x) is given by equation (A.32)
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Two issuesconcerningtheaboverecurrenceshouldbementioned:

a) Therecurrencefor Kn(k, x) is only requiredfor theevaluationof L_(k, x). In the

specialcasethat r = R (i.e. k = 1),Jekeli (1979)hassucceededin eliminatingKn(k, x)

from therecursivealgorithm,by manipulatingequationscorrespondingto (A.29a)and

(A.30a). However,thistechniquecannotbeappliedin thecurrentcasewherek assumes

arbitraryvaluesin theinterval(0, 1].

b) Although mathematicallycorrect, and useful for low altitude applications, the

recurrencepresentedherefor Qn(k,x) hasnumericalinstabilityproblemsfor highaltitude

cases.Theinstability is introducedto thealgorithmthroughtheuseof equation(A.29a)
thatdeterminesKn(k, x). As it canbeseenfrom (A.29a), the division by k introduces

numerical problemsasko0 (i.e. asthe altitudeincreases). Throughnumerical tests
(usingdoubleprecisionarithmetic)it wasverified thatfor altitudeequalto 600km, and
_o assmall asone degree,the coefficientsQn(k, x) becomeunreliableafter n -- 600.

This problem is of the samenature with the numerical instability encounteredby

Shepperd(1979)in therecurrencerelationwhichhederivedfor thealtitudegeneralized
mancationcoefficientscorrespondingto Stokes'kernel(ibid, p. B-3).

Finally, to completethe determinationof Qn(k, x), one needsto derive the
expressionfor Qn(k,1),i.e. considerthecase_go= 0 (x = 1),which wasexcludedfrom

the abovealgorithm. AlthoughH(k, t) hasa singularity at t = 1(seeequation(A.9)),
Qn(k,x) is neverthelesswell-definedfor x = 1. Takinginto accountequation(A.10),it

canbeeasilyseenthat:

Qn(k,1)= ---2-- k n+l ; n>0
n + 1 (A.44)



APPENDIX B

TRUNCATION COEFFICIENTS IMPLIED BY THE
3

KERNEL H*(k, t) = H(k, t) - k - _ k2t

In case the gravity disturbance, 8g(r, 0, _), contains no zeroeth- and first-degree

terms, one needs to determine the truncation coefficients Q_ (k, x) implied by the kernel

function H*(k, t), where:

H*(k, t) = H(k, t) - k - _ k2t 03.1)

or, in series expansion form:

H*(k, t) = _ _ kn+'Pn(t)
n=2 n+l (B.2)

The truncation coefficients Q_ (k, x) are defined by:

. IQ_(k, x) = H*(k,t) Pn (t)dt

1

or,

* kflP a _ fl tPrt
Q_(k, x) = 0n(k, x)- (t)dt- k 2 (t}dt

- .

Utilizing the results of Appendix A, one has from (A. 13a):

(B.3)

(B.4)

Pn(t)dt = In(x)

(B.5a)
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while,dueto equation(A.2):

Ii tPn(t)dt
= n+l In+l(X) + In-l(X)

2n+ 1

The last equation, due to (A.19a), may be rewritten as:

fl tPn(t)dt = n + 1 xln(x) + --1-- In-l(x). n+2 n+2

Due to (B.5a,b) equation (B.4) finally becomes:

I

O_(k,x)= _(k, x)-Ikln(X)

and, along with the starting values:

Q_(k,x)=Qo(k,x)-[k(x+l) + 3k24 (x2"l)]

Ql(k,x)=Ql(k,x )-[k(x2-1) + k22 (x3 +1)]

2 )+ ._3_k1_ [¢n + 1)xI,(x)+ In.l(x)]
2n +4 "
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(B.5b)

; n > 2 (B.6)

(B.7)

(which have been obtained by direct integration performed in equation (B.4)) defines the

recurrence relation required to evaluate the coefficients Q_(k, x), from the already derived

recurrences for Qn(k, x) and In(x) (see Appendix A).

The recurrence relation (B.6) is valid regardless of the value of Vo. If Vo = 0,

then Qn(k,1) in (B.6) are obtained from equation (A.44); otherwise the Qn(k, x) are

obtained from equation (A.32). If one rewrites equation (B.4) as:

I? °(t) Pn(t)dt _ fl
Q_(k, x) = Qn(k, x)- k - k 2 Pl(t)Pn(t)dt (B.8)

which is valid for n > 0, then it can be seen easily that:

(a) Q_(k, 1) = On(k, 1) for every n > 2

lit

(b) Q*(k, l) = Q_(k, 1) = 0, while Q_(k, x) and Ql(k, x) are not equal to zero for x. 1.



APPENDIX C

DEGREEVARIANCESOFA FIRST-ORDERGAUSS-MARKOV

PROCESSON THE SPHERE

Considerthehomogeneousandisotropicfirst-orderGauss-Markov stochastic

process on the sphere, defined through its covariance function:

o(_t) = c.e-XV ; c > 0, _. > 0 (C.1)

where _ is the spherical distance in radians. The degree variances of the above

covariance function constitute the power spectrum of the process, and are given by the

Legendre transform of _(_). Using unnormalized spherical harmonics, due to isotropy,

one has for the degree variance at degree n"

On = 2n+l O(_)pn(cos_) sin_i/d_tdot

4r_ =0 ---0

or, due to (C.1):

(C.2)

fin = _ C e-_-VPn(cOs_)sin_d_i/
(C.3)

Let:

exp(-Xv)Pn(cOs_)sin_dv

(C.4)

so that _n is given by:
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(C.5)
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Changing the variableOne proceeds next with the derivation of an expression for An(k).

from xg to t = cosxg, one has from (C.4):

f'An(_.) = exp(-_.cos-lt)Pn(t)dt

1

which, due to equation (A.3) of Appendix A, yields:

I' • .exp(-_.cosdt)(Pn+ 1 - Pn.1)dt
1 (c.6)

With w = exp(-_.cos-lt) (hence dw = _.w (1 - t2)-l/2dt), and dv = (P_+I - P__l)dt (hence

v = Pn+l(t) - Pn-l(t)), integration by parts in equation (C.6), yields:

An(_) = If exp(-_,cos-ltX 1
2n + 111J- t2)'1/2 (Pn-1 " Pn+l)dt

((2.7)

where, in deriving (C.7), use was made of equation (A.5) of Appendix A. From

Hobson (1965, equation 20.36), one has:

(2n + 1)(t 2 - 1)P n = n(n + 1)(Pn+l - Pn-1) (C.8)

according to which, equation (C.7) becomes:

_'flexp(-Xcos-ltXl-t2)l/2PndtAn()')-n(n + 1)

Now let:

w = exp(-_.cos-lt)(1 - t2) 1/2

(C.9)

so that:

dw = exp(-_Lcos-lt)[2L - t(1-t2)-l/2]dt

and, dv = Pn dt (hence, v = Pn(t)). Then, integration by parts in equation (C.9) yields:



ifix IAn(_') = n(n_+ 1) exP(-Xc°s'ltX1- t2)'l/2tPndt- XAn(_,

which, due to equation (A.4) of Appendix A, yields:

An(_,) = n(n_+ 1) [Ii exp(-_,cos'lt){1 - t2)- l/2Pn-ldt

-_fl exp(-Xc°s-ltX1- t2)'/2Pndt - XAn(_.)

which, taking into account equation (C.9), reduces finally to:

XI'
[(n + 1)2 + _,2]An(_.)= exp(JLcos-ltX1 - t2)-'/2Pn.ldt
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(C.10)

Evaluating (C. 10) for n = n - 2 and subtracting (C. 10) from the corresponding equation,

one obtains:

I'[(n- 1)2 + ;Z2]An_2(_,)-[(n + 1)2 + _,2]An(_,) = X exp(-;LcosdtX1 - t2)-V2(Pn.3 - Pn-1)dt

1

The right-hand side of the last equation equals, due to (C.7), to (2n - 3) An-2(_,) so that

the preceding equation, after the algebraic simplifications, yields:

An(_.) = _L2 + (n- 2) 2 An-2(_L)

_2 + (n + 1) 2 (C.11)

Considering now equation (C.5), it can be easily seen that the degree variances of o(V)

may be evaluated from the following recurrence relation:

_2
On=2n+ ] +(n-2) 2

2n-3 _2+(n+1) 2
on-2 ; n>2

(C.12)

which requires starting values for Oo and Ol. These are obtained by direct integration

performed in equation (C.3) which yields:



O'o=_c t +¢_
2 _2+1

_sl= 3s_1- e-_
2 _2+4

146

(C.13)
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